

AN-1428 LM3370 Evaluation Board

1 Introduction

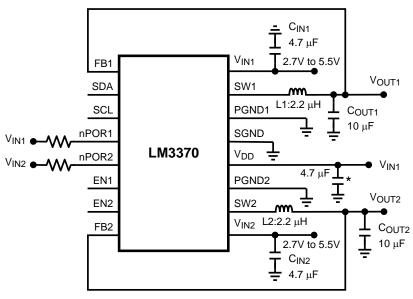
The LM3370 evaluation board is a working demonstration of a DUAL step down DC-DC converter. This application note contains information about the evaluation board. For more details and electrical characteristic on the dual buck converter operation, see the *LM3370 Dual Synchronous Step-Down DC-DC Converter with Dynamic Voltage Scaling Function Data Sheet* (SNVS406).

2 General Description

The LM3370 is a dual step-down DC-DC converter optimized for powering ultra-low voltage circuits from a single Li-Ion cell or 3 cell NiMH/NiCd batteries. Automatic intelligent switching between PWM low-noise and PFM low current mode offers improved system efficiency. The I²C compatible offers dynamic controls of the output voltages, Auto PFM/PWM mode selection and other enabling enchantment features such as power-on-reset (nPOR) and spread spectrum.

3 Operating Conditions

- V_{IN} range: 2.7V ≤ V_{IN} ≤ 5.5V
- Recommended load current: 0 to 600mA I²C Compatible Interface
- V_{OUT1} (1V to 2V at 50mV step increment)
- V_{OUT2} (1.8V to 3.3V at 100mV steps increment).
 Package
- TLA20CWA micro SMD, (3.0mm x 2.0mm x 0.6mm)
- LLP16 non-pullback, (4mm x 5mm x 0.8mm)


All trademarks are the property of their respective owners.

Typical Application

www.ti.com

4 Typical Application

* Optional Capacitor

Figure 1. Typical Application Circuit

5 Operating Information

The LM3370SD evaluation board is pre-programmed to 1.2V at V_{OUT1} and 3.3V at V_{OUT2} for evaluation purpose (no additional interface hardware is needed). If different default output option is desired, the same evaluation board can be used to demount the existing device and replace with a new voltage option (voltage option can be ordered from TI's website at www.ti.com).

The device comes with the following default setting: Auto PFM and PWM transition mode when the I^2C compatible interface is not enabled. For other settings, I^2C compatible interface must be used to enable all other functions. Registers information are listed on page 4 for I^2C compatible interface.

6 Powering Up the Evaluation Board

- Apply a voltage at the "Vin_EXT" pin only (not Vin_IO).
- All logic pins are tied to "Vin" on the evaluation board
- Do not power the "Vin_IO" pin unless powering the logic pins via an external source. (Jumper at Vin_IO must be removed.)
- V_{DD} pin is tied to V_{IN1} & V_{IN2} on the evaluation board, no additional connection required. (For any reason if V_{DD} is not directly tied to V_{IN} , V_{DD} needs to be equal or greater than the two inputs (V_{IN1} or V_{IN2}) for proper operation.)

7 I²C Interface Ready

If interface capability is available via I²C compatible, the SDA & SCL test pins of the evaluation board are brought out for such function. The SDA & SCL pins of the evaluation board are connected to 2 k Ω resistors and pulled up to V_{IN} pin.

8 Package Marking Information

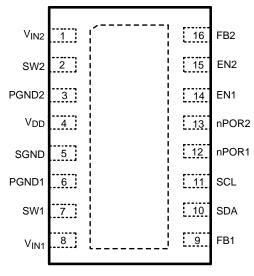
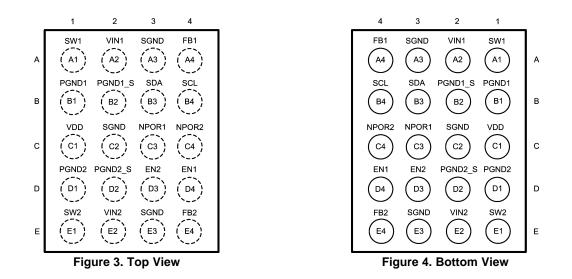


Figure 2. Top View


9 Pin Descriptions (WSON)

1	V _{IN2}	Power supply voltage input to PFET and NFET switches for Buck2	
2	SW2	Buck 2 Switch pin	
3	PGND2	Buck 2 Power Ground	
4	V _{DD}	Signal supply voltage input, V_{DD} must be equal or greater of the two inputs (V_{IN1} or V_{IN2})	
5	SGND	Signal GND	
6	PGND1	Buck 1 Power Ground	
7	SW1	Buck 1 Switch pin	
8	V _{IN1}	Power supply voltage input to PFET and NFET switches fo Buck1	
9	FB1	Analog feedback input for Buck 1	
10	SDA	I^2C Compatible Data, a 2 k Ω pull up resistor is required	
11	SCL	I^2C Compatible Data, a 2 k Ω pull up resistor is required	
12	nPOR1	Power ON Reset for Buck 1, Open drain output low when Buck 2 output is 92% of target output. A 100 k Ω pull up resistor is required	
13	nPOR2	Power ON Reset for Buck 2, Open drain output low when Buck 2 output is 92% of target output. A 100 k Ω pull up resistor is required	
14	EN1	Buck 1 Enable	
15	EN2	Buck 2 Enable	
16	FB2	Analog feedback input for Buck 2	

Package Marking Information (DSBGA)

10 Package Marking Information (DSBGA)

11 Pin Descriptions (DSBGA)

Table 2. Pin Descriptions (DSBGA)

Pin No	Name	Description	
A1	SW1	Buck 1 Switch Pin	
A2	V _{IN1}	Power supply voltage input to PFET and NFET switches for Buck 1	
A3	SGND	Signal GND	
A4	FB1	Analog Feedback Input for Buck 1	
B1	PGND1	Buck 1 Power Ground	
B2	PGND1_S	Buck 1 Power Ground Sense	
B3	SDA	I^2C Compatible Data, a 2 kΩ pull up resistor is required	
B4	SCL	I^2C Compatible Clock, a 2 k Ω pull up resistor is required	
C1	V _{DD}	Signal supply voltage input, V_{DD} must be equal or greater of the two inputs ($V_{IN1} \& V_{IN2}$)	
C2	SGND	Signal GND	
C3	nPOR1	Power ON Reset for Buck 1, Open drain output Low when Buck 1 output is 92% of target output. A 100 k Ω pull up resistor is required	
C4	nPOR2	Power ON Reset for Buck 2, Open drain output Low when Buck 2 output is 92% of target output. A 100 k Ω pull up resistor is required	
D1	PGND2	Buck 2 Power Ground	
D2	PGND2_S	Buck 2 Power Ground Sense	
D3	EN2	Buck 2 Enable	
D4	EN1	Buck 1 Enable	
E1	SW2	Buck 2 Switch Pin	
E2	V _{IN2}	Power supply voltage input to PFET and NFET switches for Buck 2	
E3	SGND	Signal GND	
E4	FB2	Analog feedback for Buck 2	

Buck Output Voltage Selection Codes				
Data Code	Buck_1 (V)	Buck_2 (V)		
00000	NA	NA		
00001	NA	1.8		
00010	NA	1.85 or 1.9 ⁽¹⁾		
00011	NA	2.0		
00100	NA	2.1		
00101	1.00	2.2		
00110	1.05	2.3		
00111	1.10	2.4		
01000	1.15	2.5		
01001	1.20	2.6		
01010	1.25	2.7		
01011	1.30	2.8		
01100	1.35	2.9		
01101	1.40	3.0		
01110	1.45	3.1		
01111	1.50	3.2		
10000	1.55	3.3		
10001	1.60	NA		
10010	1.65	NA		
10011	1.70	NA		
10100	1.75	NA		
10101	1.80	NA		
10110	1.85	NA		
10111	1.90	NA		
11000	1.95	NA		
11001	2.00	NA		

 Table 3. Output Selection Table via I²C Programing

⁽¹⁾ Can be trimmed at the factory at 1.85V or 1.9V using the same trim code.

12 Registers Information

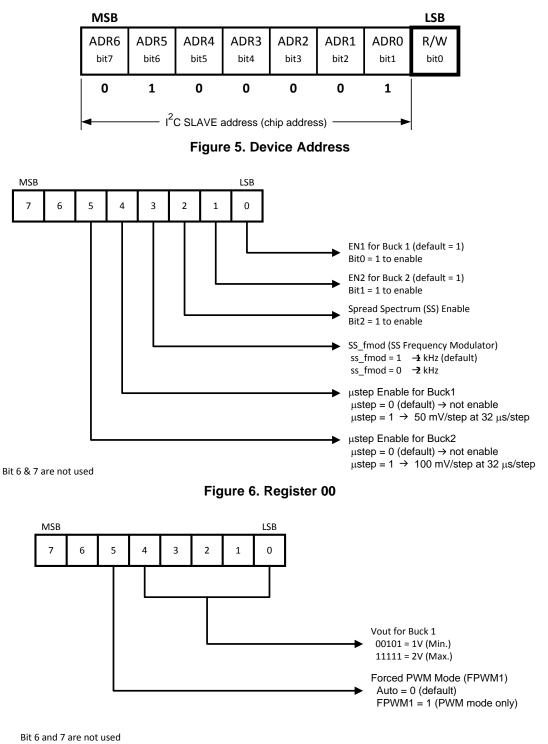
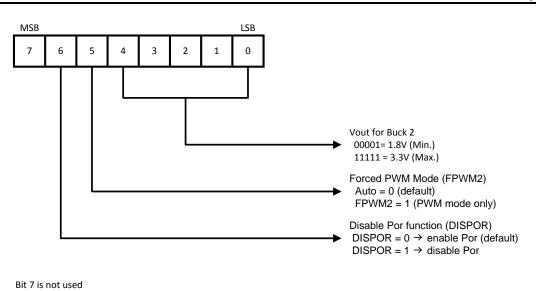



Figure 7. Register 01

13 Evaluation Board Layout (WSON)

LM3370SD is a 4-layer board designed to maximize the performance fo the device.

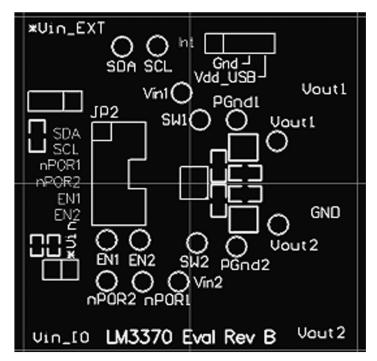


Figure 9. Silk Screen

Evaluation Board Layout (WSON)

www.ti.com

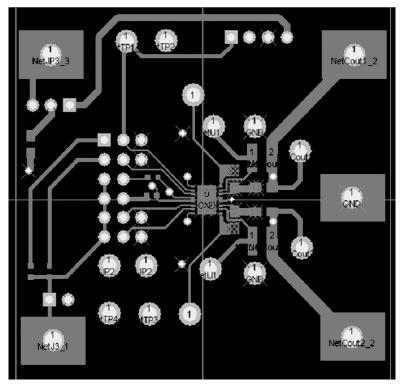


Figure 10. Top Layer

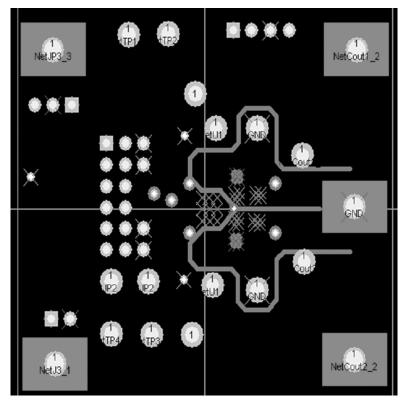


Figure 11. Mid Layer 1

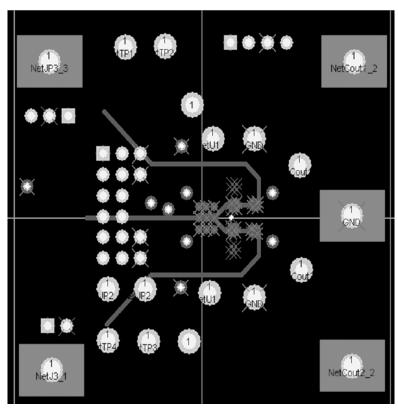


Figure 12. Mid Layer 2

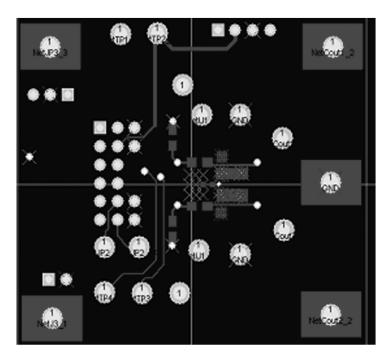


Figure 13. Bottom Layer

Evaluation Board Layout (DSBGA)

14 Evaluation Board Layout (DSBGA)

The LM3370TL applications is of similar layout to the LLP board with the exception of the SCL, SDA pins. When using the USB interface cable the order of these pins is reversed.

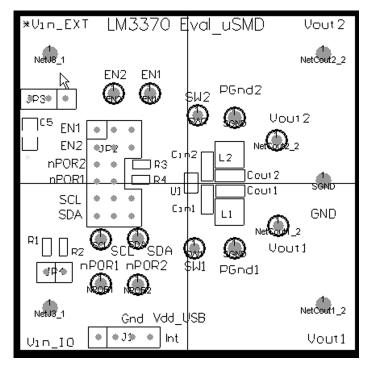


Figure 14. Silk Screen

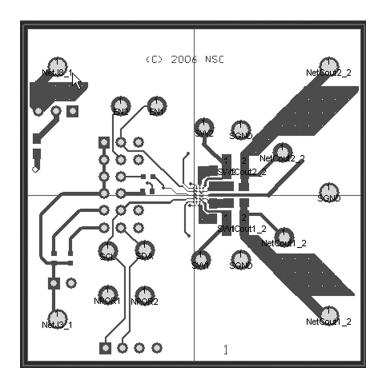


Figure 15. Top Layer

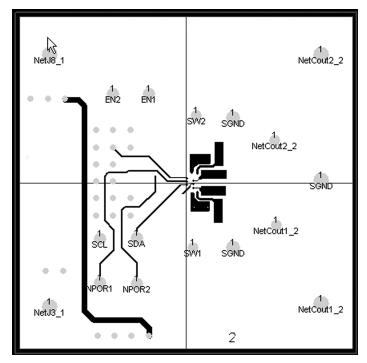


Figure 16. Mid Layer 1

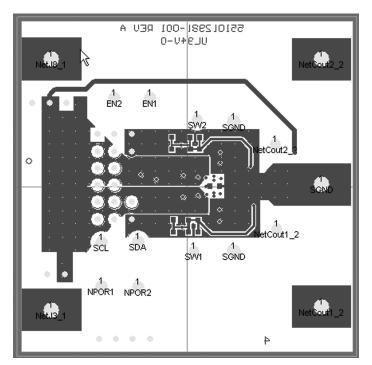


Figure 17. Bottom Layer

15 Bill of Materials (BOM)

Component Name	Manufacture	Manufacture No		Specification
LM3370		<u>i</u>		-
C _{IN1} and C _{IN2}	TDK	C2012X5R0J475K	C2012X5R0J475K	
	muRata	GRM219R60J475KE19D	GRM219R60J475KE19D	
C_{OUT1} and C_{OUT2}	TDK	C2012X5R0J106K	C2012X5R0J106K	
	muRata	GRM219R60J106KE19D	GRM219R60J106KE19D	
L1 & L2	Taiyo-Yuden	NR3015T-2R2M	NR3015T-2R2M	
R1-2(SDA+SCL)	Vishay			
R3-4 (nPOR1-2)	Vishay			
TEST Pins and Con	inectors			
V _{OUT1} ,V _{OUT2} , GND, *Vin_EXT, Vin_IO				
nPOR1. nPOR2, SDA, SCL, PGND1, PGND2, V _{IN1} , V _{IN2} ,				
Jumper				
SDA/SCL/nPOR1		Jumpers Female(Handle ce	Jumpers Female(Handle centerline)	
nPOR2/EN1/EN2				
*VIN & *VIN_IO		_		
*VIN_IO				2 in series (2x1)
*VIN_EXT				2 in series (2x1)
Int		Berk stick	Header	4 in series (4x1)
JP2:SDA & SCL				6 in series(6x2)
nPOR1/ nPOR2/EN1& EN2				2 in series 2(2x1)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated