
 2001 Microchip Technology Inc. DS41174A

PICDEM™ USB
User’s Guide

Note the following details of the code protection feature on PICmicro ® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
DS41174A - page ii
Trademarks

The Microchip name and logo, the Microchip logo, PIC, PICmicro,
PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL,
MPLAB and The Embedded Control Solutions Company are reg-
istered trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab,
MXDEV, microID, FlexROM, fuzzyLAB, MPASM, MPLINK,
MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable
Memory, FanSense, ECONOMONITOR, Select Mode, dsPIC,
rfPIC and microPort are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2001, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Printed on recycled paper.
 2001 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

PICDEM™ USB USER’S GUIDE

Table of Contents
Preface
Introduction .. 1

Highlights ... 1

About This Guide ... 1

Warranty Registration .. 3

Recommended Reading .. 3

The Microchip Internet Web Site ... 4

Development Systems Customer Notification Service 5

Customer Support ... 7

Chapter 1. Getting Started with the PICDEM™ USB
1.1 Introduction .. 9

1.2 Highlights ... 9

1.3 Unpacking your PICDEM™ USB Kit ... 9

1.4 Running the Default Demonstration .. 10

1.5 Branching Out on Your Own ... 10

Chapter 2. USB Demonstration Code

2.1 Gameport - USB Translator ... 13

2.2 PS/2 Keyboard/Mouse - USB Translator ... 17

2.3 Combination Gameport/PS/2/Mouse - USB Translator 23

2.4 Multi-Function LCD Text Display Example .. 25

Chapter 3. PICDEM™ USB Hardware
3.1 Oscillator Support .. 31

3.2 Connector Pinout ... 32

3.3 Buttons and Jumpers .. 36

3.4 Power .. 37
 2001 Microchip Technology Inc. DS41174A-page iii

PICDEM™ USB USER’S GUIDE
Chapter 4. Chapter 9 USB Firmware
4.1 Introducing the USB Software Interface ..39

4.2 Integrating USB Into Your Application ...39

4.3 Interrupt Structure Concerns ...40

4.4 File Packaging ...41

4.5 Function Call Reference ..42

4.6 Behind the Scenes ...44

4.7 Examples ...45

4.8 Multiple Configuration or Report Descriptors46

4.9 Optimizing the Firmware ..47

4.10 Cursor Demonstration ..48

Chapter 5. Troubleshooting
5.1 Introduction ..51

5.2 Highlights ...51

5.3 FAQ ...51

Appendix A. PICDEM™ USB Schematics
Introduction ..53

Highlights ...53

Schematics ..54

Appendix B. PS/2 Lookup Tables
Introduction ..61

Scan Codes ...61

Command Codes ...62

Glossary
Introduction ..65

Highlights ...65

PICDEM™ USB Terms ..65

Index .. 73

Worldwide Sales and Service .. 76
DS41174A-iv  2001 Microchip Technology Inc.

PICDEM™ USB USER’S GUIDE

Preface
Introduction
This chapter contains general information about this manual and contacting
customer support.

Highlights
Topics covered in this chapter:

• About this Guide

• Warranty Registration

• Recommended Reading

• The Microchip Internet Web Site

• Development Systems Customer Notification Service

• Customer Support

About This Guide

Document Layout
This document describes how to use PICDEM™ USB to attach a new
peripheral to a PC. The manual layout is as follows:

• Chapter 1: Getting Started with the PICDEM™ USB – What
PICDEM™ USB is and how it works.

• Chapter 2: PICDEM™ USB Demonstration Code – Provides USB
demonstration code and information on Gameport™, PS/2® Keyboard/
Mouse, Combination Gameport/PS/2, and LCD Demo.

• Chapter 3: PICDEM™ USB Hardware – Contains oscillator support,
connector pinout, buttons and jumpers, and power information.

• Chapter 4: Chapter 9 USB Firmware – Describes the USB software
interface.

• Chapter 5: Troubleshooting – Provides solutions to common prob-
lems users may experience with PICDEM™ USB. It also includes FAQ
on Hardware, PC/Windows® and Macintosh® concerning the
PICDEM™ USB.

• Appendix A: Schematics – Provides the schematics for the
PICDEM™ USB.

• Appendix B: PS/2 Lookup Tables – Provides scan and command
code tables for easy reference.
 2001 Microchip Technology Inc. DS41174A-page 1

PICDEM™ USB User’s Guide
• Index – Provides a cross-reference listing of terms, features, and
sections of this document.

• PICDEM™ USB Worldwide Sales and Service – Lists Microchip sales
and service locations and telephone numbers worldwide.

Conventions Used in this Guide
This manual uses the following documentation conventions:

Documentation Conventions

Description Represents Examples

Code (Courier font):

Plain characters Sample code,
file names and paths

#define START
c:\autoexec.bat

Angle brackets:
< >

Variables <label>, <exp>

Square brackets [] Optional arguments MPASMWIN
[main.asm]

Curly brackets and
pipe character: { | }

Choice of mutually exclusive
arguments, an OR selection

errorlevel {0|1}

Lower case charac-
ters in quotes

Type of data "filename"

Ellipses... Used to imply (but not show)
additional text that is not rele-
vant to the example

list
["list_option..,
"list_option"]

0xnnn A hexadecimal number where
’n’ is a hexadecimal digit

0xFFFF, 0x007A

Italic characters A variable argument; it can be
either a type of data (in lower
case characters) or a specific
example (in uppercase
characters)

char isascii
(char, ch);

Interface (Arial font):

Underlined, italic
text with right arrow

A menu selection from the
menu bar

File > Save

Bold characters A window or dialog button to
click

OK, Cancel

Characters in angle
brackets < >

A key on the keyboard <Tab>, <Ctrl-C>

Documents (Arial font):

Italic characters Referenced books MPLAB® IDE User’s
Guide
DS41174A-page 2  2001 Microchip Technology Inc.

Preface
Updates
All documentation becomes dated, and this user’s guide is no exception.
Since the MPLAB IDE, PICDEM™ USB and other Microchip tools are
constantly evolving to meet customer needs, some MPLAB® dialogs and/or
tool descriptions may differ from those in this document. Please refer to our
web site at http://www.microchip.com to obtain the latest documentation
available.

Warranty Registration
Please complete the enclosed Warranty Registration Card and mail it
promptly. Sending in your Warranty Registration Card entitles you to receive
new product updates. Interim software releases are available at the Microchip
web site.

Recommended Reading
This user’s guide describes how to use PICDEM™ USB. The data sheets
contain current information on programming the specific microcontroller
devices.

README.USB

For the latest information on using PICDEM™ USB, read the README.USB
file (ASCII text file) included with the PICDEM™ USB software. The
README.USBfile contains update information that may not be included in this
document.

MPLAB ® IDE User’s Guide (DS51025)

Comprehensive guide that describes installation and features of Microchip’s
MPLAB Integrated Development Environment (IDE), as well as the editor and
simulator functions in the MPLAB environment.

MPASM™ User’s Guide with MPLINK™ Linker and
MPLIB™ Librarian (DS33014)

Describes how to use Microchip Universal PICmicro® Microcontroller
Assembler (MPASM™), Linker (MPLINK™), and Librarian (MPLIB™).

Technical Library CD-ROM (DS00161)

This CD-ROM contains comprehensive data sheets for Microchip PICmicro®

MCU devices available at the time of print. To obtain this disk, contact the
nearest Microchip Sales and Service location (see back page), or download
individual data sheet files from the Microchip web site
(http://www.microchip.com).
 2001 Microchip Technology Inc. DS41174A-page 3

PICDEM™ USB User’s Guide
Embedded Control Handbook (DS00711)

This handbook consists of several documents that contain a wealth of
information about microcontroller applications. To obtain these documents,
contact the nearest Microchip Sales and Service location (see back page).

The application notes described in these manuals are also obtainable from
Microchip Sales and Service locations or from the Microchip web site
(http://www.microchip.com).

PICmicro™ Mid-Range MCU Family Reference Manual (DS33023)

This manual explains the general details and operation of the MCU family
architecture and peripheral modules. It is designed to complement the device
data sheets.

Microsoft ® Windows ® Manuals

This manual assumes that users are familiar with Microsoft Windows
operating system. Many excellent references exist for this software program,
and should be consulted for general operation of Windows.

USB Complete

This book is a good introduction to the USB interface and how to use it. It was
written by Jan Axelson.

PIC16C745/765 Data Book (DS41124)

This book contains everything you ever wanted to know about the
PIC16C745/765 and more.

USB IF

The USB IF can be downloaded from www.usb.org, which has all the
specifications for the USB interface. It is a valuable tool. Be sure to download
the USBCheck PC tools and register on the USB mailing list.

Microsoft DDK

If you are developing PC drivers for Windows, don’t forget to get the driver
development kit and the professional version of Visual Studio®.

Apple ® USB Software Developer Kit (SDK)

If you are going to develop Mac drivers, go to
www.developer.apple.com/SDK/index.html and download the SDK
and register on the USB mailing list.

The Microchip Internet Web Site
Microchip provides online support on the Microchip World Wide Web (WWW)
site.

The web site is used by Microchip as a means to make files and information
easily available to customers. To view the site, the user must have access to
the Internet and a web browser, such as Netscape® Communicator or
Microsoft® Internet Explorer®. Files are also available for FTP download from
our FTP site.
DS41174A-page 4  2001 Microchip Technology Inc.

Preface
Connecting to the Microchip Internet Website
The Microchip web site is available by using your favorite Internet browser
to attach to:

http://www.microchip.com

The file transfer site is available by using an FTP program/client to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may
download files for the latest Development Tools, Data Sheets, Application
Notes, User's Guides, Articles, and Sample Programs. A variety of Microchip
specific business information is also available, including listings of Microchip
sales offices, distributors and factory representatives. Other data available for
consideration is:

• Latest Microchip Press Releases

• Technical Support Section with Frequently Asked Questions

• Design Tips

• Device Errata

• Job Postings

• Microchip Consultant Program Member Listing

• Links to other useful web sites related to Microchip Products

• Conferences for Products, Development Systems, Technical
Information and more

• Listing of Seminars and Events

Development Systems Customer Notification Service
Microchip started the customer notification service to help our customers
keep current on Microchip products with the least amount of effort. Once you
subscribe to one of our list servers, you will receive email notification
whenever we change, update, revise or have errata related to that product
family or development tool. See the Microchip web page at
http://www.microchip.com for other Microchip list servers.

The Development Systems list names are:

• Compilers

• Emulators

• Programmers

• MPLAB IDE

• Otools (other tools)
 2001 Microchip Technology Inc. DS41174A-page 5

PICDEM™ USB User’s Guide
Once you have determined the names of the lists that you are interested in,
you can subscribe by sending a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe <listname> yourname

Here is an example:

subscribe programmers John Doe

To UNSUBSCRIBE from these lists, send a message to:

listserv@mail.microchip.com

with the following as the body:

unsubscribe <listname> yourname

Here is an example:

unsubscribe programmers John Doe

The following sections provide descriptions of the available Development
Systems lists.

Compilers
The latest information on Microchip C compilers, Linkers and Assemblers.
These include MPLAB® C17, MPLAB® C18, MPLINK™ Object Linker (as well
as MPLIB™ Object Librarian), and MPASM™ Assembler.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe compilers yourname

Emulators
The latest information on Microchip In-Circuit Emulators. These include
MPLAB® ICE and PICMASTER® Emulator.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe emulators yourname

Programmers
The latest information on Microchip PICmicro device programmers. These
include PRO MATE® II and PICDEM™ USB.
DS41174A-page 6  2001 Microchip Technology Inc.

Preface
To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe programmers yourname

MPLAB IDE
The latest information on Microchip MPLAB IDE, the Windows Integrated
Development Environment for development systems tools. This list is focused
on MPLAB IDE, MPSIM™ Simulator, MPLAB’s Project Manager and general
editing and debugging features. For specific information on MPLAB
compilers, linkers and assemblers, subscribe to the COMPILERS list. For
specific information on MPLAB emulators, subscribe to the EMULATORS list.
For specific information on MPLAB device programmers, please subscribe to
the PROGRAMMERS list.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe mplab yourname

Customer Support
Users of Microchip products can receive assistance through several
channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Corporate Applications Engineer (CAE)

• Hotline

Customers should call their distributor, representative, or field application
engineer (FAE) for support. Local sales offices are also available to help
customers. See the back cover for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at
(480) 792-7627.

In addition, there is a Systems Information and Upgrade Line. This line
provides system users a listing of the latest versions of all of Microchip's
development systems software products. Plus, this line provides information
on how customers can receive any currently available upgrade kits.

The Hotline Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.
 2001 Microchip Technology Inc. DS41174A-page 7

PICDEM™ USB User’s Guide
NOTES:
DS41174A-page 8  2001 Microchip Technology Inc.

PICDEM™ USB USER’S GUIDE

Chapter 1. Getting Started with the PICDEM™ USB
1.1 Introduction
The Universal Serial Bus (USB) has become the most accepted way for any
new peripheral to be attached to a PC. The interface is fully supported by all
major computer manufacturers and most operating systems. Since this inter-
face has become more accepted, it has moved out of the consumer market. It
is starting to find its way into data acquisition and industrial markets. Within
these markets, a large number of PICmicro solutions are looking for a migra-
tion path to USB. By providing a USB derivative of the classic PIC16C72/74
devices, Microchip encourages you to move your applications into the new
world of USB; and as an addition bonus, the examples provide an opportunity
to play games.

1.2 Highlights
The topics covered in this chapter are:

• Unpacking your PICDEM™ USB

• Running the Default Demonstration

• Branching out on your own

1.3 Unpacking your PICDEM™ USB Kit

1.3.1 Supplied Items
The items contained in your PICDEM™ USB box are:

• Microchip USB CD-ROM containing USB support documentation

• PICDEM™ USB Circuit Board with a PIC16C765 installed

• CD-ROM containing MPLAB IDE

• 3 ft. USB A-B cable

• Small box containing a windowed PIC16C745 and PIC16C765

1.3.2 Required Items
The items required are:

• PC for running MPLAB IDE

• Visual Basic and/or Visual C++ to modify the PC examples

• PC with USB running Windows® 98 or newer (for the PC examples)

• Macintosh with USB running MacOS X 10.0 or newer (for the Macintosh
examples). The HID examples work with MacOS 8.6 or newer.

• Apple® Project Builder to modify the Macintosh code examples
 2001 Microchip Technology Inc. DS41174A-page 9

PICDEM™ USB User’s Guide
• PICSTART® Plus or PRO MATE® II to program the devices

• UV chip eraser to clean the mistakes

• Copy of Apple’s USB DDK so you can use the USB bus monitoring
tools on the Macintosh (http://developer.apple.com/hardware/usb/)

• Copy of the USB-IF PC tools (www.usb.org)

1.3.3 Suggested Items
The items suggested are:

• USB protocol analyzer such as CATC

• Membership in the USB-IF, Inc. (www.usb.org)

• MPLAB® ICE 2000

1.4 Running the Default Demonstration
If you have a PC/Macintosh with USB, attach your PICDEM™ USB with the
supplied cable. The LED’s should quickly blink as the PICDEM™ USB identi-
fies itself. The EP1 ACT light should start to flicker steadily, and the mouse
cursor on your computer should start to move in a circle.

Unplug the USB cable and plug a PS/2 mouse into the PS/2 connector. Re-
attach the USB cable. You will notice the mouse cursor is no longer moving in
a circle, but is responding to the mouse. Unplug the USB cable and plug in a
PS/2 keyboard. Re-attach the USB cable. The LED’s flicker and the keyboard
is functioning as a USB keyboard.

Regardless of what PS/2 device is attached (or not attached), the EP2 ACT
light will be flashing. This is due to the PICDEM™ USB constantly streaming
gameport data to the host, regardless of whether a gaming device is plugged
in or not. You can test the gameport by using the gamepad specified in
Section 2.1: Gameport - USB Translator.

This example takes advantage of the existing human interface device (HID)
code in the host’s operating system. For a more complex example showing
host driver code, you will have to consult the LCD Demo example.

1.5 Branching Out on Your Own

1.5.1 Developing New USB Applications
The following steps are recommended to develop most new USB
applications.

• Describe the application.

• Create the descriptors.

• Debug the report descriptor with dummy data.

• Develop the rest of the application.
DS41174A-page 10  2001 Microchip Technology Inc.

Getting Started with the PICDEM™ USB
By following these steps, the hardest part of the development can be com-
pleted right away on known good hardware (the PICDEM™ USB). After the
application is communicating to the PC correctly, the application specific
hardware and software can be developed.

1.5.1.1 Describing the Application

When you start developing your application, make sure that your data require-
ments fit the USB specification. A low speed device is limited to 2 channels of
communication (end points), with each channel limited to 800 bytes per
second. The most common mistake is to assume that the entire 1.5 Mbs is
available for your application.

1.5.1.2 Creating the Descriptors

The most difficult part of any USB application is determining what the device
descriptors should be. Every USB device communicates its requirements to
the host through a process called enumeration. During enumeration, the
device descriptors are transferred to the host and the host assigns a unique
address to the device. The descriptors are described in detail in Chapter 9 of
the USB 2.0 specification. Bundled with the USB tools CD, a descriptor tool is
provided to assist you in creating your own descriptors.

1.5.1.3 Debugging the Report Descriptor

The report descriptor allows HID devices to communicate to the host. The
report descriptor communicates the exact packet format of your data. This is
where the PC determines how large your packets will be. Report descriptors
range from the very specific (a multi-function joystick) to the very generic (a
specialized communications device for your application). Tools are available
to assist you in creating your report descriptors. The descriptor tool, which is
bundled in your kit, will have report descriptor capabilities with a future revi-
sion. After the report descriptor is written make sure that it is working with the
PC by using PC analysis tools. These are available from the USB-IF web site
for the PC, and Apple Computer for Macintosh machines. Use simple
counters and other dummy data to test report descriptor traffic. After the com-
munications link is working, it will be much easier to develop the rest of the
application.

1.5.1.4 Developing the Rest of the Application

The next step is to add your specific hardware and software. Carefully study
the schematic in this guide and use the same circuitry for the USB connec-
tions. The circuitry will never change for this device. When your hardware is
built, you can be confident that your communications code will work because
it was developed on the development system with the same communications
circuitry.
 2001 Microchip Technology Inc. DS41174A-page 11

PICDEM™ USB User’s Guide
NOTES:
DS41174A-page 12  2001 Microchip Technology Inc.

PICDEM™ USB User’s Guide

Chapter 2. USB Demonstration Code
A variety of examples have been provided on the CD-ROM to speed you
towards a successful start with USB. These examples range from the very
basic gameport translator, to a very specialized LCD display. The gameport
and PS/2 examples are excellent tools to use, in order to become more famil-
iar with report descriptors and basic USB communications. These basic
examples are extremely useful because the OS vendor has already written
generic Human Interface Device (HID) drivers. The LCD display example
does not have a generic PC driver. In this example, PC software has been
provided to demonstrate how you can develop your own PC applications to
interface to your device. Example code is provided for PC and Macintosh.

2.1 Gameport - USB Translator

2.1.1 Introduction
The gameport to USB translator is a simple example that reads a PC game-
port and reports the information over USB. Since peripherals for gameports
come in all shapes and sizes, it is important to identify exactly what peripheral
is used, in this example -- the Dexxa® 8-button gamepad. Other gamepads
can be used, however, some change to the firmware functions may be
required. The example code will enumerate as a gamepad with 2 axis and 6
buttons. PORTA on the PICmicro MCU is used to read the analog voltages
from resistors in the direction pad (D-pad) and two of the buttons, while
PORTD reads the switches for the four remaining buttons. Refer to
Figure 2.1.
 2001 Microchip Technology Inc. DS41174A-page 13

PICDEM™ USB User’s Guide
Figure 2.1: Dexxa ® Gamepad

2.1.2 About the PC Gameport
The PC gameport was designed to support 2 joysticks. Each joystick was
intended to have 2 axis and 2 buttons. The gameport was later extended to
support a MIDI serial interface. The gameport hardware supplied with the
PICDEM™ USB does not support the MIDI interface, so those pins have
been disconnected. Two joysticks are supported, but to simplify the example,
only one joystick is used.

2.1.3 Hardware Implementation
The hardware is supplied on the PICDEM™ USB circuit board. The board is
wired with PORTA<3:0> and PORTD<3:0>, connected to the DB-15 connec-
tor of the gameport. PORTD<3:0> are the digital inputs for buttons A-D.
PORTA<0> and PORTA<1> are the X-Y inputs for the D-pad on the game-
pad. PORTA<2> and PORTA<3> are the inputs for buttons E and F (see
Appendix A for the gamepad to PICDEM™ USB schematic). All of the analog
pins have a series resistor, a resistor, and capacitor tied to ground. The rea-
son for this comes from the way analog pins were originally read by the PC.
The PC would clear a capacitor tied to ground at its end and then time how
long it took the capacitor to charge up. The capacitor would charge at a rate
proportional to the resistance of a pot, varied by one axis of the joystick, for
instance. This is legacy technology and is not needed when using a PICmicro
MCU with an analog-to-digital converter. As a result, the before mentioned
circuitry was put into place in order to obtain an analog output from the D-pad
of the gamepad and buttons E and F. Another point of confusion develops
from viewing the analog output of the gamepad with this circuitry in place. The

Note: Although the Dexxa® gamepad has 8 buttons, the code enumer-
ates as a 6-button gamepad. This is due to the gamepad having
two “special” buttons, that rapidly fire two of the other button
outputs.

D-PAD

TA TB

C A B

D

F

E

DS41174A-page 14  2001 Microchip Technology Inc.

USB Demonstration Code
voltage level is not symmetrical around 2.5 volts. You would expect the center
position of the D-pad’s x-axis, for instance, to output 2.5 volts, the left position
to output 0 volts and the right position to output 5 volts. Ideally it would, but
the circuitry in the gamepad is very simple; besides, this symmetry is not
needed. All that is needed is a lower voltage input into the PICmicro MCU
when the pad is pressed one direction from center, and a higher voltage input
when the pad is pressed in the other direction from center. The circuitry found
on the PICDEM™ USB board amplifies the differences in voltages between
these three positions and therefore, gives three very distinct analog-to-digital
readings.

2.1.4 Gamepad Firmware
The firmware has four functions. Each function either returns one piece of
information concerning the gameport status, or initiates the gameport regis-
ters. Refer to Table 2.1.

Table 2.1: Gameport Firmware

2.1.5 Gamepad Report Descriptor
The report descriptor used in this example is for a gamepad with 6 buttons.
The minimum and maximum report values for the axis are set to 0 - 255. This
is to be used with Windows. Some versions don’t seem to handle a range of
-127 to 127. The -127 value is translated to 255 and causes extreme move-
ment to the right. The range selected works correctly on Windows and on
Macintosh. Interestingly, the Macintosh performs a simple filter on the center
of the range. It will filter changes of 1 count to prevent cursor jitter when the
stick is centered. This caused problems with a minimum and maximum range
of 0 - 2. When the range was extended to 0 - 4, it worked much better. In this
example, the analog input from the D-pad will be converted to digital, filtered,
and then sent to the PC via USB. Since this digital value can range from

Note 1: Buttons E and F are connected to analog pins because the
gameport has four analog pins and four digital pins. Buttons
A-D use up all the digital pins so the analog pins are the only
inputs left over. Many joysticks have a multiplexer on button
numbers greater than four, in order to achieve the same result
using just the digital pins.

2: Be very careful when using the LCD interface and the gameport
together because they share PORTD.

Function Description

ReadXAxis Returns a digital value for the x-axis in W

ReadYAxis Returns a digital value for the y-axis in W

ReadButtons Returns the state of the six buttons in W (bits 0-5
correspond to buttons A-F)

InitGameport Initialize the system to use the Gameport
 2001 Microchip Technology Inc. DS41174A-page 15

PICDEM™ USB User’s Guide
0 - 255, the descriptor calls for a range of 0 - 255. The descriptor, shown
below in HEX form, is in the gamepad descriptor file (usb_ch9.asm).

0x05, 0x01 USAGE_PAGE (Generic Desktop)
0x09, 0x05 USAGE (Game Pad)
0xA1, 0x01 COLLECTION (Application)
0x09, 0x01 USAGE (Pointer)
0xA1, 0x00 COLLECTION (Physical)
0x09, 0x30 USAGE (X)
0x09, 0x31 USAGE (Y)
0x15, 0x00 LOGICAL_MINIMUM (0)
0x26, 0xFF, 0x00 LOGICAL_MAXIMUM (255)
0x75, 0x08 REPORT_SIZE (8)
0x95, 0x02 REPORT_COUNT (2)
0x81, 0x02 INPUT (Data,Var,Abs)
0xC0 END_COLLECTION
0x05, 0x09 USAGE_PAGE (Button)
0x19, 0x01 USAGE_MINIMUM (Button 1)
0x29, 0x06 USAGE_MAXIMUM (Button 6)
0x15, 0x00 LOGICAL_MINIMUM (0)
0x25, 0x01 LOGICAL_MAXIMUM (1)
0x75, 0x01 REPORT_SIZE (1)
0x95, 0x06 REPORT_COUNT (6)
0x81, 0x02 INPUT (Data,Var,Abs)
0x95, 0x02 REPORT_COUNT (2)
0x81, 0x03 INPUT (Constant,Var,Abs)
0xC0 END_COLLECTION

This report descriptor describes the packet format for the USB data. The data
is filled from Least Significant Byte, Least Significant bit through to the Most
Significant Byte, Most Significant bit. The first field found will be the first bit/
byte. In the report descriptor above, the first data is 8 bits (the REPORT_SIZE
is 8) and it is the X axis (the first USAGEof the physical collection is X). So the
first byte on the bus will be the X axis value. The second byte will be the Y
axis. The third byte will be button A in bit 0, followed by button B in bit 1, and
so on. Because every USB transaction must be in whole number bytes, the
data is padded by one constant report, 2-bits long.

2.1.6 Gameport Translation
Translating the bits from the physical hardware to the USB buffer is very sim-
ple. Because we set the logical minimum and maximum to be 0 to 255, it
exactly matches the scaling of the analog-to-digital converter. So first, we
convert the X and Y axis and store the values in the first two buffer locations.
Secondly, we read the six buttons and store the values in the third buffer loca-
tion in bits 0-5. Lastly, we inform the serial interface engine that data is
available and wait for the host PC to come pick it up.
DS41174A-page 16  2001 Microchip Technology Inc.

USB Demonstration Code
2.1.7 Vendor/Product Identification
Besides the report information, the descriptors also contain manufacturing
and product identification codes. Microchip has a registered Vendor ID with
the USB IF forum, which identifies Microchip’s Vendor ID as 0x04D8. You are
allowed to use this ID for your own testing, but you may not ship any products
with this code without written permission from Microchip. Microchip has
defined product ID’s for each demonstration code included in this kit. As addi-
tional demonstration devices are released, Microchip will ensure that no
duplicate ID’s are used.

2.2 PS/2 Keyboard/Mouse - USB Translator

2.2.1 Introduction
This is the demonstration firmware that is programmed into the PIC16C765
and installed on the PICDEM™ USB demonstration board. The PS/2 connec-
tor was added so PS/2 mice and keyboards could be translated to USB.
Again, this is a straightforward application intended to provide practice with
device descriptors. The PS/2 interface is a synchronous serial interface with
different data protocols for keyboards and mice. Device descriptors in the
PICmicro microcontroller allows the unit to report itself as either a keyboard or
a mouse. When a mouse is attached to a PS/2 port, it identifies itself as a
mouse. When the PICmicro MCU receives this identification, it will perform a
soft detach from the USB bus and re-attach as a mouse. When the PICmicro
MCU identifies the PS/2 device as a keyboard, it will perform a soft detach
and re-attach as a keyboard. Using soft detach may be a useful feature in
your application, so you can practice using it with this example.

2.2.2 About the PS/2 Port
IBM® originally developed the PS/2 port for use on its PS/2 family of comput-
ers. This port is a synchronous serial port clocked by the PS/2 device (key-
board/mouse). Generally, PC’s have two PS/2 ports labeled as keyboard or
mouse. The PICDEM™ USB only has one PS/2 port. Since the hardware is
the same, either the keyboard or mouse can be used, simply by interpreting
the data correctly.

2.2.3 Hardware Implementation
The PS/2 port is a 6-pin DIN which only uses 4 pins. The pins are used for
power, ground, clock, and data. Power and ground pins are directly tied to VDD

and VSS. If power management is desired, the power pins must be driven via
switches from other I/O pins.The clock pin is connected to RC0, while the data
pin is connected to RC1. The PS/2 device clocks the host even when it is receiv-
ing data. The data pin is used to send and receive data from the keyboard.

Note: It may be necessary to attach 110 kOhm pull-down resistors on
RC0 and RC1, in order for auto-detect to work without pressing
MCLR between plugging and unplugging PS/2 devices.
 2001 Microchip Technology Inc. DS41174A-page 17

PICDEM™ USB User’s Guide
2.2.4 Data Format
The data is sent via PS/2 one byte at a time, regardless of direction, host-to-
device, or vice versa. The data is as follows:

• First comes a START bit (always low), followed by a

• data byte (Least Significant bit to Most Significant bit), then by a

• parity bit (high for an even number of high bits in the data byte and low
for an odd number), then by a

• STOP bit (always high)

In the case of host-to-device communication, the STOP bit is immediately fol-
lowed by an ACK bit (low), which is sent by the device to the host. The bits
are read on the falling edge of the clock for device-to-host communication
and on the rising edge for host-to-device communication. In the IDLE state,
the clock and data lines are held high by the device. See Figure 2.2 and
Figure 2.3 for device-to-host and host-to-device communication, respectively.

Figure 2.2: Device-to-Host Communication
(Data bit Read on Falling Edge of Clock)

Figure 2.3: Host-to-Device Communication
(Data bit Read on Rising Edge of Clock)

Clock

Data

D
A

TA

D
A

TA

D
A

TA

D
A

TA

D
A

TA

D
A

TA

D
A

TA

P
A

R
-

S
T

O
P

D
A

TA

S
TA

R

Clock

Data

D
A

TA

D
A

TA

D
A

TA

D
A

TA

D
A

TA

D
A

TA

D
A

TA

P
A

R
-

S
T

O
P

D
A

TA

S
TA

R

A
C

K

DS41174A-page 18  2001 Microchip Technology Inc.

USB Demonstration Code
2.2.5 Keyboard
The PS/2 keyboard data report format is summarized for every key in
Appendix B. Make codes are the byte or bytes that the PS/2 keyboard sends
to the host when a certain key is pressed. Break codes are the bytes that the
PS/2 keyboard sends when the user releases a key. If the user does not
release a specific key for several hundreds of a millisecond, the make code
will be sent repeatedly until the user releases the key. At this point, the break
code is sent. The Translation to USB, Section 2.2.11, details how the
firmware converts PS/2 keycodes to USB keycodes.

2.2.6 Mouse
Table 2.2 details a typical PS/2 mouse data format.

Table 2.2: PS/2 Mouse Data Report Format

2.2.7 Hardware Implementation
A PS/2 port is a 6-pin DIN, but only four pins are used (see Appendix A for
pinout.) The pins are power, ground, clock and data. The clock pin is con-
nected to RC0, while the data pin is connected to RC1. A PS/2 device clocks
the host even when it is receiving data. By attaching the data pin to RC1, a
START bit will interrupt the PICmicro MCU through a Capture/Compare/PWM
(CCP) event. Refer to the PIC16C7XX data sheet for details on CCP. Power
and ground are directly tied to VDD and VSS. If power management were
desired, the power pins would be driven via switches from other I/O pins.

Note: The PS/2 keycodes shown in Appendix B do not apply to all PS/2
keyboards. Several code sets have been used through the years.
However, this code set is the most common.

Byte Bit Description

3 7
6-1
0

MSB of Y Data
Y Data
LSB of Y Data

2 7
6-1
0

MSB of X Data
X Data
LSB of X Data

1 7
6
5
4
3
2
1
0

Y Data Overflow, 1 = overflow
X Data Overflow, 1 = overflow
Y Data Sign, 1 = negative
X Data Sign, 1 = negative
Reserved
Reserved
Right Button Status, 1 = pressed
Left Button Status, 1 = pressed
 2001 Microchip Technology Inc. DS41174A-page 19

PICDEM™ USB User’s Guide
2.2.8 PS/2 Firmware
The PS/2 firmware is entirely interrupt driven. As mentioned before, an inter-
rupt is generated when the START bit is received, at which time the firmware
will begin its receive routine. In addition to this interrupt, every 168 ms, a timer
overflow interrupts the normal program flow and implements one state of the
mouse/keyboard/cursor demonstration state machine. This state machine
handles sending bytes to and translating bytes received from the PS/2
device, automatically. These two interrupts essentially handle everything,
except for transferring the bytes via USB to the PC. In addition, it does all of
this work in the background while a developer’s code runs in the foreground.
The only operation that the developer’s program must implement is sending
keyboard or mouse data to the PC via USB. The developer needs only to be
concerned with the TYPE and eight BUFFER registers. BUFFER registers 0
to 7 are the registers where translated PS/2 device data gets placed. TYPE
contains the following status bits:

Table 2.3: PS/2 State Machine Status Report

2.2.9 Report Descriptor
The report descriptors used in the example code for both the keyboard and
mouse were copied directly out of the HID Usage Tables. The HID Usage
Tables document is published by the USB Implementers Forum
(www.usb.org). Many other useful HID report descriptor examples can be
found in this document. The keyboard and mouse report descriptors are not
sent out at the same time that the PICmicro MCU is enumerated by the host.
Rather, the PICmicro MCU will only send the report descriptor that corre-
sponds to the device it has detected as being attached at that time.

2.2.9.1 Keyboard Descriptor

0x05, 0x01 usage page (generic desktop)
0x09, 0x06 usage (keyboard)
0xA1, 0x01 collection (application)
0x05, 0x07 usage page (key codes)
0x19, 0xE0 usage minimum (224)
0x29, 0xE7 usage maximum (231)
0x15, 0x00 logical minimum (0)
0x25, 0x01 logical maximum (1)
0x75, 0x01 report size (1)
0x95, 0x08 report count (8)
0x81, 0x02 input (data, variable, absolute)

TYPE bit Name Description

0 CONNECTED 1 = device connected

1 MOUSE 1 = device connected is a mouse

2 KEYBOARD 1 = device connected is a keyboard

3 DATA READY 1 = data is ready; must be cleared by user
DS41174A-page 20  2001 Microchip Technology Inc.

USB Demonstration Code
0x95, 0x01 report count (1)
0x75, 0x08 report size (8)
0x81, 0x01 input (constant)
0x95, 0x05 report count (5)
0x75, 0x01 report size (1)
0x05, 0x08 usage page (page# for Led)
0x19, 0x01 usage minimum (1)
0x29, 0x05 usage maximum (5)
0x91, 0x02 output (data, variable, absolute)
0x95, 0x01 report count (1)
0x75, 0x03 report size (3)
0x91, 0x01 output (constant)
0x95, 0x06 report count (6)
0x75, 0x08 report size (8)
0x15, 0x00 logical minimum (0)
0x25, 0x65 logical maximum (101)
0x05, 0x07 usage page (key codes)
0x19, 0x00 usage minimum (0)
0x29, 0x65 usage maximum (101)
0x81, 0x00 input (data, array)
0xC0 end collection

2.2.9.2 Mouse Descriptor

0x05, 0x01 usage page (generic desktop)
0x09, 0x02 usage (mouse)
0xA1, 0x01 collection (application)
0x09, 0x01 usage (pointer)
0xA1, 0x00 collection (linked)
0x05, 0x09 usage page (buttons)
0x19, 0x01 usage minimum (1)
0x29, 0x03 usage maximum (3)
0x15, 0x00 logical minimum (0)
0x25, 0x01 logical maximum (1)
0x95, 0x03 report count (3)
0x75, 0x01 report size (1)
0x81, 0x02 input (3 button bits)
0x95, 0x01 report count (1)
0x75, 0x05 report size (5)
0x81, 0x01 input (constant 5 bit padding)
0x05, 0x01 usage page (generic desktop)
0x09, 0x30 usage (X)
0x09, 0x31 usage (Y)
0x15, 0x81 logical minimum (-127)
0x25, 0x7F logical maximum (127)
0x75, 0x08 report size (8)
0x95, 0x03 report count (2)
0x81, 0x06 input (2 position bytes X & Y)
0xC0 end collection
0xC0 end collection
 2001 Microchip Technology Inc. DS41174A-page 21

PICDEM™ USB User’s Guide
2.2.10 Soft Detach
The soft detach command is one of the most useful features on the USB
PICmicro MCU. The reason the soft detach command is so useful is that in
applications such as the PS/2 mouse/keyboard example, no special driver
has to be created for the host. Most often for this application, the PICmicro
MCU would have two configurations - one for a mouse and the other for a
keyboard. A special driver would have to be created for the host that would
instruct the PICmicro MCU to change configurations. Furthermore, in order to
do this, the host’s driver would have to be able to detect what peripheral is
attached. An easy way to avoid difficulty with creating a unique driver for the
host, is to give the PICmicro MCU control over whether it will send the host
mouse or keyboard data. Based on the type of data it will send to the PC, the
PICmicro MCU can soft detach and re-enumerate as the peripheral of choice.

In this example, several events precede the implementation of a soft detach.
As mentioned before, an interrupt is generated when the data line goes low.
This initiates the receive routine, because it is assumed that the data line
dropping low is the result of a START bit being sent by the device. However,
the data line will also drop if the user disconnects the device. To distinguish
between these two cases, the firmware starts a timer when the data line goes
low. If the timer times out before the clock line goes high, the device has been
disconnected. Otherwise, the data line going low is the result of a START bit.
Once it has been determined that a device has been disconnected, the firm-
ware waits for another device to be attached. When the clock and data lines
are both high, a device has been attached. At this point, the PICmicro MCU
will ask the device to identify itself (see Appendix B for keyboard and mouse
commands). Based on the device’s response, the firmware will know whether
the newly attached device is a keyboard or mouse and perform a soft detach.

During the soft detach process, several things occur. First, the PICmicro MCU
turns off the pull-up resistor to VUSB. The firmware does this by clearing the
DEV_ATT bit. Turning the pull-up resistor off, removes the PICmicro MCU
from the bus. After approximately 50 ms, which is enough time for the host to
see the device disconnect, the firmware sets DEV_ATT and reconnects the
PICmicro MCU to the bus. The host then re-enumerates the PICmicro MCU.

2.2.11 Translation to USB
In order to act like a USB mouse or keyboard, the PICmicro MCU has to
translate the PS/2 data format for each device to its USB data format. For the
mouse, this is very simple. For the keyboard, however, the process is more
complex.
DS41174A-page 22  2001 Microchip Technology Inc.

USB Demonstration Code
2.2.11.1 Keyboard

Incoming PS/2 data can be one to eight bytes long. No pattern or mathemati-
cal expression can be used to convert incoming PS/2 data to a USB keycode.
USB keycodes are one byte in length. There is one USB keycode for every
key on the keyboard. A lengthy lookup table is used to implement the transla-
tion from PS/2 to USB keycodes. The lookup table is found in file
table_kb.asm of the example firmware. The USB keycodes are shown in
Section 9 of the HID Usage Tables document.

2.2.11.2 Mouse

The mouse translation from a PS/2 format to a USB format is very simple. The
PS/2 button states are simply copied into the correct bits in the USB buffer.
The data overflow and data sign bits in the first PS/2 byte are not necessary
and are therefore, not transferred to the corresponding USB byte. The X-axis
bytes are identical in both the PS/2 and USB data formats. The PS/2 Y-axis
byte is complimented in order to mirror the byte and is then passed into the
last byte of the USB mouse data. This makes three bytes of USB mouse data.
You may notice, however, that four bytes are sent to the PC in the example
code. This is because a mouse is unique, in that it is a boot device and as
such, has a stringent format defined for it. This format requires that four bytes
always be sent, despite the possibility that the last byte may not be needed
for a particular mouse. This fourth byte is reserved for the scrolling wheel
found on some mice.

2.3 Combination Gameport/PS/2/Mouse - USB
Translator

2.3.1 Introduction
The low speed USB interface has two endpoints. Each endpoint can be con-
figured for transmit or receive, but not both. Each endpoint has its own report
descriptor. This example shows how you can create a combination device
that provides a completely different interface over two different endpoints. A
gamepad is reported on EP2 while EP1 reports a mouse.

2.3.2 Using Multiple Endpoints
There is a hierarchy of descriptors for every USB device. For a HID device
that uses only one interface, the hierarchy is shown in Figure 2.4. During enu-
meration, the host will ask the device for its descriptors with the following
sequence of requests.

1. Get_Device_Descriptor
2. Get_Configuration_Descriptor
3. Get_Report_Descriptor
4. Get_String_Descriptor
 2001 Microchip Technology Inc. DS41174A-page 23

PICDEM™ USB User’s Guide
The device will send out its configuration, interface, HID, and endpoint
descriptors (in that order), when it receives the Get_Configuration_Descriptor
request. Therefore, you'll find in the firmware that these descriptors fall
between the labels Config1 and EndConfig1. In the case of two interfaces,
shown in Figure 2.5, the device sends the host the configuration, interface1,
HID1, endpoint1, interface2, HID2, and endpoint2 descriptors (in that order),
in response to the Get_Configuration_Descriptor request. In this example,
interface1 is a mouse that sends data over EP1, and interface2 is a gamepad
communicating with the host over EP2. Each interface requires its own report
descriptor.

Figure 2.4: One Interface

Figure 2.5: Two Interfaces

device

configuration

report

interface

HIDendpoint

device

configuration

report1 report2

interface2interface1

endpoint1HID1 HID2endpoint2
DS41174A-page 24  2001 Microchip Technology Inc.

USB Demonstration Code
There is no way to tell what endpoint a report descriptor is associated with by
looking at the report descriptor. In other words, unlike other descriptor types,
report descriptors do not have a field that identifies them as a report descrip-
tor. Nor do report descriptors have an index number that distinguishes one
from another. Report descriptors are associated with the appropriate endpoint
in the firmware with the use of a Report Descriptor Index.

Looking at Figure 2.5 again, you can see that HID1 is associated with
endpoint1 and that HID1 specifies that it has a report descriptor. The host
assigns this report descriptor an index value of 0 (this is a zero based array),
simply because the HID1 descriptor is the first descriptor sent to the host that
specifies a report descriptor. Similarly, the host assigns the report descriptor
specified by HID2 an index value of 1. The host keeps track of what descrip-
tors branch off a particular interface, therefore, the host is able to deduce that
report descriptors with indexes 0 and 1 are describing the communication that
will take place over endpoint1 and endpoint2, respectively. The host will call
these report descriptors with the Get_Report_Descriptor request. As part of
this request, the host specifies the index number of the descriptor it desires.
It's up to the developer to make sure that Report Descriptor 1 is sent to the
host when index 0 is specified in the request, and Report Descriptor 2 is sent
to the host when index 1 is specified. To make this process as painless as
possible, the Report Descriptor Index in file descript.asm was created. In
this index, all that is needed, is for you to list the labels of your report descrip-
tors in the order that the corresponding HID descriptors are sent to the host.

2.4 Multi-Function LCD Text Display Example

2.4.1 Introduction
USB endpoints can be used to send data from the host as well as receive
data from a device. In this example, a simple vendor defined protocol is used
to draw text on the LCD. Additional commands are provided to move the cur-
sor around, clear the screen, download custom font characters, send data
through the serial port, and light LED’s on PORTB. This example does not
use the alphanumeric HID class defined by the USB-IF. This example used
the second endpoint to provide additional functionality. The second endpoint
will receive serial data from the UART and read the analog-to-digital
converter.

2.4.2 Hardware Implementation
The hardware is simply the PICDEM™ USB with an LCD character module
attached to the LCD connector. The LCD control signals are PORTE, while the
data is PORTD. Provision is in place for backlight power on the PICDEM™
USB, but backlight control is not provided. If you use an LCD with an LED
backlight, your board could draw slightly more than 100 mA. Fortunately, cur-
rent PC drivers will not shut-down the device for using too much current,
unless the current draw from all the USB ports or a hub exceeds 500 mA.
Future PC drivers may require additional power management capabilities.
 2001 Microchip Technology Inc. DS41174A-page 25

PICDEM™ USB User’s Guide
The LCD module used is a standard 2x16 character module, which uses a
Hitachi 44780 controller.

2.4.3 LCD Driver Firmware
The lcd.asm file contains the LCD firmware. For additional information on
the LCD features and command set, consult the documentation for the
Hitachi 44780 controller. The firmware provides the following functions to the
rest of the USB application.

Any LCD operation can be performed with these functions. The LCD firmware
supplied is a linkable file (lcd.asm).

Table 2.4: LCD Driver Firmware

Command Function

LCDINIT Initializes the LCD in 8-bit mode, clears the screen and
hides the cursor.

LCDCLEAR Clears the display and homes the cursor.

LCDHOME Homes the cursor without clearing the display.

LCDEMODE Sets the entry mode of the display.
Required entry mode must be set in W.
b0 : 0 = no display shift 1 = display shift
b1 : 0 = auto-decrement 1 = auto-increment
b2-7 : not used

LCDDMODE Sets the display control.
Required display mode must be set in W.
b0 : 0 = cursor blink off 1 = cursor blink on
b1 : 0 = cursor off 1 = cursor on
b2 : 0 = display off 1 = display on (display data is

intact)
b3-7 : not used

LCDSCGA Sets the LCD Character RAM Address to the value in W.
This prepares the display to accept font data at the indi-
cated address.

LCDSDDA Sets the LCD Data RAM Address to the value in W. This
prepares the display to accept characters at the indicated
cursor address. It can also be used to move the cursor
around the screen.

LCDADDR Returns the current address in W. Useful for saving the
current cursor position before updating the font data.

LCDPUTCHAR Writes the character in W to the current data memory
address. Causes a character to be placed on the screen.

LCDPUTCMD Writes the byte in W to the command memory. This is
used to implement most of the previous commands. This
won’t be used frequently but if you want to use a specific
feature of the display, this is where to look.
DS41174A-page 26  2001 Microchip Technology Inc.

USB Demonstration Code
2.4.4 LCD Report Descriptor
The report descriptor for this example is very simple; a vendor defined usage
page and a vendor defined usage with an 8-byte payload. Two reports are
defined, one for input and one for output. The report formats are identical.

dt 006h, 000h, 0ffh ; USAGE_PAGE (Vendor Defined Page 1)
dt 009h, 001h ; USAGE (Vendor Usage 1)
dt 0a1h, 001h ; COLLECTION (Application)
dt 019h, 001h ; USAGE_MINIMUM (Vendor Usage 1)
dt 029h, 008h ; USAGE_MAXIMUM (Vendor Usage 8)
dt 015h, 000h ; LOGICAL_MINIMUM (0)
dt 026h, 0ffh, 000h ; LOGICAL_MAXIMUM (255)
dt 075h, 008h ; REPORT_SIZE (8)
dt 095h, 008h ; REPORT_COUNT (8)
dt 081h, 002h ; INPUT (Data,Var,Abs)
dt 019h, 001h ; USAGE_MINIMUM (Vendor Usage 1)
dt 029h, 008h ; USAGE_MAXIMUM (Vendor Usage 8)
dt 091h, 002h ; OUTPUT (Data,Var,Abs)
dt 0c0h ; END_COLLECTION

2.4.5 USB Command Set
The USB command set implementation is simple. The first byte in the packet
is the command byte, while the remaining seven bytes contain data. The
command byte has a command number in the low nibble, while the upper nib-
ble contains a command modifier. Although six commands are implemented,
sixteen commands are available.

Table 2.5: USB Command Set

Command
Number

Command Name Function

0 Clear Display This command clears the display and
homes the cursor. No additional data is
required so the data bytes are ignored.

1 Move Cursor This command moves the cursor to the
indicated row and column. The row is
specified in the first data byte while the
column is specified in the second data
byte. The row byte is limited to 2 rows.
This code works on a 2x20 LCD. It
should also work on a 2x16 LCD.
Beyond that, expect to modify the code.

2 Write Text This commands writes the N characters
to the current cursor position.

N is the value in the upper nibble of the
command and cannot exceed 7.

The data is in the 7 data bytes following
the command.
 2001 Microchip Technology Inc. DS41174A-page 27

PICDEM™ USB User’s Guide
3 CGRAM Data This command modifies one of the eight
programmable characters in the charac-
ter generator RAM. The upper nibble
defines which character is to be modi-
fied. The remaining 7 bytes contain the
data. The data is formatted as a 5x7 bit
array. The 7 bytes are the 7 rows. Only
the 5 LSB’s are used in each byte. The
top row is the first byte.

4 Serial Data This command works the same way as
the Write Text command. The number of
bytes to send is the upper nibble. The
data is sent through the serial port at
28800 8n1.

5 LED Data If the LED’s are not being used by the
Chapter 9 firmware, you can light the
LED’s with the contents of data byte 0.
This command simply copies the data
byte to PORTB.

6-15 Unused Unused

Table 2.5: USB Command Set (Continued)

Command
Number

Command Name Function
DS41174A-page 28  2001 Microchip Technology Inc.

USB Demonstration Code
2.4.5.1 Input Commands

The input pipe will send these commands in random order depending on
when data is present.

Table 2.6: Input Commands

2.4.6 PC Code Support
The PC code is written with Visual Basic using an ActiveX® control for the
USB interface. The ActiveX control is based on the code in USB Complete by
Jan Axelson. The PC code interfaces to this example through the windows
HID API. Unfortunately, the HID API’s don’t provide direct access to the
endpoints.

Command
Number

Command Name Function

0 Unused Unused

1 Unused Unused

2 Unused Unused

3 Unused Unused

4 Serial Data Pass up to 7 serial characters back to the
host. Total number of characters is in the
high nibble. Characters queue until the host
asks for them. Baud rate is 28800 8n1.

5 Unused Unused

6 Unused Unused

7 ADC Data Pass 5 bytes of ADC data. Each byte
comes from a different ADC channel.
Channels AN0-AN4 are read.

8-15 Unused Unused
 2001 Microchip Technology Inc. DS41174A-page 29

PICDEM™ USB User’s Guide
2.4.7 Macintosh Code Support
Macintosh computers have supported USB since the introduction of the iMac®

and MacOS version 8.6. Operating systems prior to MacOS X are referred to
as the "Classic" environment.

2.4.7.1 MacOS 8.6 through 9.1

At this time, no examples are available for the older "Classic" versions of the
Macintosh operating system. Consult Apple’s USB software development kit
for help in creating applications for these operating systems.

2.4.7.2 MacOS X

The MacOS X code is based on the simple example code supplied with the
USB DDK from Apple Computer. This example interfaces directly with the
USB layer in the operating system, which bypasses the HID system. The
advantage to this method is the direct access to the endpoints. Fortunately,
this level of access is available from a user program and a kernel level device
driver is not required.
DS41174A-page 30  2001 Microchip Technology Inc.

PICDEM™ USB User’s Guide

Chapter 3. PICDEM™ USB Hardware
3.1 Oscillator Support
The PIC16C745/765 can support a few different oscillator options. Regard-
less of what oscillator is used, the internal clock must be 24 MHz. This is
required by the USB Serial Interface Engine (SIE). To assist in running at
24 MHz with a low cost oscillator, the HS and EC clock modes are provided
with an internal 4x PLL clock multiplier. This allows 6 MHz oscillators to be
used to save cost and EMI. The PICDEM™ USB hardware has the provisions
for a canned oscillator, a crystal, or resonators. Refer to Figure 3.1.

Figure 3.1: Oscillator/PLL Clock Control

3.1.1 Canned Oscillator
Any full size canned oscillator of 6 MHz or 24 MHz can be used. Remove the
resonator from the resonator pads to use the oscillator.

3.1.2 Resonator
A 6 MHz or 24 MHz resonator can be used. Pads are available to use resona-
tors with internal or external capacitors. The resonator supplied with the kit is
a 6 MHz resonator with internal capacitors. If you decide to use a resonator
with external capacitors, you should select capacitors that will maximize the
voltage swing across the resonator.

EC
E4
HS
H4

EC
E4
HS
H4

OSC2

OSC1 24 MHz
FINT

Q Clock
Generator4x PLL

6 MHz

To PIC

To SIE
 2001 Microchip Technology Inc. DS41174A-page 31

PICDEM™ USB User’s Guide
3.1.3 Crystal
A fundamental cut crystal of 6 MHz or 24 MHz can be used with additional
capacitors installed in the pads provided. The selection of external capacitors
must be chosen to maximize the voltage across the crystal.

3.2 Connector Pinout
This board was designed to provide experience with LS HID USB code. To
accommodate this goal, two popular interfaces have been selected to allow
for HID experimentation, the PS/2 and Gameport. A serial port was added,
but it cannot be used at baud rates below 4800 due to the high clock speed.
This prevents serial mice from being used. Additional support for LCD and
keypad was added to allow for the support of other popular devices.

3.2.1 Gameport (J4) Pinouts
The PC gameport is typically read through a one-shot multi-vibrator. This con-
figuration uses capacitor charge timing to determine the joystick position. The
implementation for the PICDEM™ USB uses the analog converters to accom-
plish the same task. A 50K resistor is used to pull down each analog channel,
allowing the ADC to read voltages between 1.25V and 5V. This is not full
range, but it will allow joystick functions to work. Removing the pull-down
resistors will allow the full 5V range of the ADC to be used. Each button input
is pulled to 5V through a 1K resistor. Consult the schematic for additional
details.

Figure 3.2: Gameport Pinouts (J4)

1
9
2

10
3

11
4

12
5

13
6

14
7

15
8

D-sub female

8
15

7
14

6
13

4
12

4
11

3
10

2
9
1

D-sub male
DS41174A-page 32  2001 Microchip Technology Inc.

PICDEM™ USB Hardware
Table 3.1: D-sub 15 Female

3.2.2 PS/2 (J12) Pinouts
PS/2 interfaces are all the same, including the mouse and keyboard ports.
The interface is a device initiated synchronous serial port. This interface is
wired to RC0 and RC1, to allow CCP interrupts to be used to read the serial
data.

Figure 3.3: PS/2 (J12) Pinouts

Pin # PIC Pin Pin Function

1 VDD VDD

2 RD0 Stick 1, Button 1

3 RA0 Stick 1, X axis

4 Vss Ground

5 VSS Ground

6 RA1 Stick 1, Y axis

7 RD1 Stick 1, Button 2

8 VDD VDD

9 RD2 Stick 2, Button 2

10 RA2 Stick 2, Y axis

11 Vss Ground

12 Vss Ground

13 RA3 Stick 2, X axis

14 RD3 Stick 2, Button 1

15 VDD VDD

2 1

4 3
56

Note: This is the view of the Din6 female connector on the PICDEM™ USB.
 2001 Microchip Technology Inc. DS41174A-page 33

PICDEM™ USB User’s Guide
Table 3.2: PS/2 (J12)

3.2.3 RS-232 (J7) Pinouts
The RS-232 connector is a DCE device, just as in a PC. To connect to a PC, a
“null modem” device must be used (swap TX and RX). This allows standard
PC peripherals to be attached to the PICDEM™ USB without using any
special cables. Presumably the USB would be used for any communications
with the PC.

Figure 3.4: RS-232 (J7) Pinouts

Table 3.3: RS-232 (J7)

Pin # PIC Pin Pin Function

1 RC0 Data

2 No Connect

3 VSS Ground

4 VDD +5V

5 RC1 Clock

6 No Connect

Pin # PIC Pin Pin Function

1 CD

2 RC7 RX

3 RC6 TX

4 DTR

5 Vss GND

6 DSR

7 RTS

8 CTS

9 RI

5
9
4
8
3
7
2
6
1

DS41174A-page 34  2001 Microchip Technology Inc.

PICDEM™ USB Hardware
3.2.4 LCD (J1) Pinouts
The LCD connector provides support for a standard 14-pin LCD module.
These modules are available through many electronics supply houses. Any
module using a Hitachi 44780A controller should work.

This connector also provides access to the parallel slave port.

Table 3.4: J1 - LCD

3.2.5 Keypad (J10) Pinouts
The keypad connector is for attaching a HEX keypad. Any row/column
strobbed keypad, with at most 4 rows and columns should work. The pinout
was chosen to be compatible with most devices but you may have to make a
special cable.

Table 3.5: J10 - Keypad

Pin # PIC pin Pin Function

1 VSS Ground

2 VDD +5V

3 LCD Contrast

4 PE0 – RD Register Select (H for data, L for instruction)

5 PE1 – WR Read/Write (H for read, L for write)

6 PE2 – CS Enable

7 PD0 – PSP0 Data 0

8 PD1 – PSP1 Data 1

9 PD2 – PSP2 Data 2

10 PD3 – PSP3 Data 3

11 PD4 – PSP4 Data 4

12 PD5 – PSP5 Data 5

13 PD6 – PSP6 Data 6

14 PD7 – PSP7 Data 7

Pin # PIC pin Pin Function

1 PB0 Row Driver

2 PB1 Row Driver

3 PB2 Row Driver

4 PB3 Row Driver

5 PB4 Column Driver

6 PB5 Column Driver

7 PB6 Column Driver

8 PB7 Column Driver

9 No Connect
 2001 Microchip Technology Inc. DS41174A-page 35

PICDEM™ USB User’s Guide
3.2.6 USB (J8) Pinouts
A standard USB Type B connector was used to allow a USB cable to connect
the PICDEM™ USB to the PC. This is against the USB specification. Techni-
cally, only full speed devices are allowed to use the type B connector.

Table 3.6: J8 - USB

3.3 Buttons and Jumpers

3.3.1 S1 - MCLR
Switch 1 is the MCLR line to the PIC16C745/765. This line resets the entire
system.

3.3.2 S2 - RA4
Switch 2 is connected to RA4. This is to allow a general purpose switch input
for code experiments. Debounce filtering is provided.

3.3.3 J3 - Bus/Self Power Selection
Jumper 3 switches the VDD power line from Bus power (VBUS from the USB
cable) to Self power (5V from the onboard regulator).

3.3.4 J9 - LED Enable
Some applications will want to use PORTB for some purpose other than driv-
ing the LED’s. By removing the jumper in J9, the LED’s will be disabled. The
default Chapter 9 firmware uses the LED’s to indicate activity at the different
stages of enumeration. To use this firmware mode, you should enable the
LED’s.

Pin # PIC pin Pin Function

1 Power

2 D+ USB Signal D+

3 D- USB Signal D-

4 Ground
DS41174A-page 36  2001 Microchip Technology Inc.

PICDEM™ USB Hardware
3.4 Power

3.4.1 Self Power Options
A power supply is provided to run the PICDEM™ USB from a 9-20VAC/DC
power supply. A transformer is not supplied in the kit because every example
included will run from the bus power.

3.4.2 Bus Power
Most USB peripherals are powered from the 5V available from the USB cable.
A minimum of 100 mA is always available. In some situations, a maximum of
500 mA can be requested and used.
 2001 Microchip Technology Inc. DS41174A-page 37

PICDEM™ USB User’s Guide
NOTES:
DS41174A-page 38  2001 Microchip Technology Inc.

PICDEM™ USB User’s Guide

Chapter 4. Chapter 9 USB Firmware
4.1 Introducing the USB Software Interface
Microchip provides a layer of software for the PIC16C745/65, which handles
the lowest level interface. This software provides a simple Put/Get interface
for communication so your application won’t have to. Most of the USB pro-
cessing takes place in the background through the Interrupt Service Routine.
From the application viewpoint, the enumeration process and data communi-
cation takes place without further interaction. However, substantial setup is
required in the form of generating appropriate descriptors.

Figure 4.1: USB Software Interface

4.2 Integrating USB Into Your Application
The latest version of the USB interface software is available on Microchip’s
web site (http://www.microchip.com/).

The interface to the application is packaged in five functions: InitUSB ,
PutEP1 , PutEP2 , GetEP1, and GetEP2. InitUSB initializes the USB periph-
eral, allowing the host to enumerate the device. Then, for normal data com-
munications, the PutEPn functions send data to the host and GetEPn
functions receive data from the host.

Since the USB depends heavily on the descriptors, a bit of setup work must
be completed. The descriptors are the software parameters which communi-
cate to the host what the device is and how to communicate with it. See USB
V1.1 Spec., Section 9.5 for more details.

Main Application

Put
EP1

Get
EP1

Init
USB

PICmicro MCU
USB

Note: Wherever the command names PutEPn and GetEPn are used, ’n’
represents the endpoint number.
 2001 Microchip Technology Inc. DS41174A-page 39

PICDEM™ USB User’s Guide
InitUSB enables the USB interrupt so enumeration can begin. The actual
enumeration process occurs in the background, driven by the host and Inter-
rupt Service Routine. Macro ConfiguredUSB waits until the device is in the
CONFIGURED state. The time required to enumerate is completely depen-
dent on the host and bus loading.

4.3 Interrupt Structure Concerns

4.3.1 Processor Resources
Most of the USB processing occurs via the interrupt and thus, is invisible to
the application. However, it still consumes processor resources. These
include ROM, RAM, Common RAM, Stack Levels, and Processor Cycles.
This section attempts to quantify the impact on each of these resources and
shows ways to avoid conflicts.

These considerations should be taken into account if you write your own Inter-
rupt Service Routine: Save W, STATUS, FSR, and PCLATH, which are the file
registers that may be corrupted by servicing the USB interrupt.

The file usb_main.asm provides a skeleton ISR, which does this for you, and
includes tests for each of the possible ISR bits. This provides a good starting
point if you haven’t already written your own.

4.3.2 Stack Levels
The hardware stack on the PICmicro MCU is only eight levels deep. There-
fore, the worst case call between the application and ISR can only be eight
levels. The enumeration process requires four levels, so it’s best if the main
application inhibits processing until enumeration is complete. Configure-
dUSB is a macro that waits until the enumeration process is complete for
exactly this purpose. This macro does this by testing the lower two bits of
USWSTAT (0x197).

4.3.3 ROM
The code required to support the USB interrupt, including Chapter 9 interface
calls, but excluding the descriptor tables is about 1 kW. The descriptor and
string descriptor tables can each require an additional 256W. The location of
these descriptors is not restricted, and the linker script may be edited to con-
trol the placement of each descriptor’s part. See the Strings and Descriptors
sections in the linker script.

4.3.4 RAM
With the exception of Common RAM discussed below, servicing the USB
interrupt requires ~40 bytes of RAM in Bank 2. This leaves all the General
Purpose RAM in Bank 0 and Bank 1, while leaving half of Bank 2 available for
your application.
DS41174A-page 40  2001 Microchip Technology Inc.

Chapter 9 USB Firmware
4.3.5 Common RAM Usage
The PIC16C745/765 has 16 bytes of common RAM. They are the last 16
addresses in each bank and all refer to the same 16 bytes of memory, without
regard to which register bank is currently addressed by the RP0, RP1 and IRP
bits.

They are particularly useful when responding to interrupts. When an interrupt
occurs, the ISR doesn’t immediately know which bank is addressed. With
devices that don’t support common RAM, the W register must be provided for
in each bank. The PIC16C745/765 can save the appropriate registers in Com-
mon RAM and not have to waste a byte in each bank for the W register.

4.3.6 Buffer Allocation
The PIC16C745/765 has 64 bytes of Dual Port RAM. Twenty-four bytes are
used for the Buffer Descriptor Table (BDT), leaving 40 bytes for buffers.

Endpoint 0 (EP0) IN and OUT need dedicated buffers, since a setup transac-
tion can never be NAKed. That leaves three buffers for four possible end-
points. However, the USB Spec. requires that low speed devices are only
allowed 2 endpoints (USB V1.1, paragraph 5.3.1.2), where an endpoint is a
simplex connection that is defined by the combination of endpoint number and
direction.

The default configuration allocates individual buffers to EP0 OUT, EP0 IN,
EP1 OUT, and EP1 IN. The last buffer is shared between EP2 IN and EP2
OUT. Again, the USB Spec. states that low speed devices can only use two
endpoints beyond EP0. This configuration supports most of the possible com-
binations of endpoints (EP1 OUT and EP1 IN, EP1 OUT and EP2 IN, EP1
OUT and EP2 OUT, EP1 IN and EP2 OUT, EP1 IN and EP2 IN). The only
combination that is not supported by this configuration is EP2 IN and EP2
OUT. If your application needs both EP2 IN and EP2 OUT, the function
USBReset will need to be edited to give each of these endpoints dedicated
buffers at the expense of EP1.

4.4 File Packaging
The software interface is packaged into four files, designed to simplify the
integration with your application.

File usb_ch9.asm contains the interface and core functions needed to enu-
merate the bus. File descript.asm contains the device, configuration, inter-
face, endpoint, and string descriptors. Both of these files must be linked in
with your application.
 2001 Microchip Technology Inc. DS41174A-page 41

PICDEM™ USB User’s Guide
File hidclass.asm provides some HID Class specific functions. Currently,
only Get_Report_Descriptor is supported. Other class specific functions can
be implemented in a similar fashion. When a get token interrupt determines
that it’s a class specific command on the basis that ReportType bit 6 is set,
control is passed to function ClassSpecific . If you’re working with a different
class, this is your interface between the core functions and the class specific
functions.

File usb_main.asm is useful as a starting point on a new application, and as
an example of how an existing application needs to service the USB interrupt
and communicate with the core functions.

4.5 Function Call Reference
Interface between the Application and Protocol layer takes place in three main
functions: InitUSB , PutEPn , and GetEPn (with ’n’ representing the endpoint
number).

4.5.1 Application Layer Function

4.5.1.1 InitUSB

InitUSB should be called by the main program immediately upon power-up. It
enables the USB peripheral and the USB Reset interrupt, and transitions the
part to the powered state to prepare the device for enumeration. At this point,
the USB Reset is the only USB interrupt allowed, preventing the part from
responding to anything on the bus until it’s been reset. The USB Reset inter-
rupt initializes the Buffer Descriptor Table (BDT) and transitions the part to the
default state, where it responds to commands on address zero. When it
receives a Set Address command, the device transitions to the addressed
state and now responds to commands on the new address.

4.5.1.2 PutEPn

PutEPn (Buffer pointer, Buffer size) sends data to the host. The pointer to the
block of data to transmit is in the FSR/IRP, and the block is passed in the W
register. The endpoint is set with a Set Instruction preceding the function defi-
nition. If the IN buffer is available for that endpoint, the block of data is copied
to the buffer. The Data 0/1 bit is then flipped and the OWNS bit is set. A
"Buffer Not Available" will occur when it has been previously loaded and the
host has not requested that the USB peripheral transmit it. In this case, a
failure code would be returned so the application can try again later.
DS41174A-page 42  2001 Microchip Technology Inc.

Chapter 9 USB Firmware
4.5.1.3 GetEPn

GetEPn (Buffer Pointer) returns data sent from the host. Provided with a
buffer pointer in FSR/IRP, if there is a buffer available (data has been received
from the host), the data it is copied to the destination pointed to by FSR/IRP.
The endpoint is set with a set instruction preceding the function definition. If
no data is available, it returns a failure code. Thus, the functions of polling for
buffer ready and copying the data are combined into one function.

4.5.2 Protocol Layer Functions

4.5.2.1 ServiceUSBlnt

ServiceUSBlnt handles all interrupts generated by the USB peripheral. First,
it copies the active buffer to common RAM, which provides a quick turn-
around on the buffer in dual port RAM. It also avoids having to switch banks
during processing of the buffer.

4.5.2.2 StallUSBEP/UnstallUSBEP

StallUSBEP/UnstallUSBEP sets or clears the STALL bit in the endpoint con-
trol register. The STALL bit indicates to the host that user intervention is
required and until such intervention is made, further attempts to communicate
with the endpoint will not be successful. Once the user intervention has been
made, UnstallUSBEP will clear the bit, allowing communications to take
place. These calls are useful in signaling the host that user intervention is
required. An example of this might be a printer out of paper.

4.5.2.3 SoftDetachUSB

SoftDetachUSB clears the DEV_ATT bit, electrically disconnecting the device
from the bus, then reconnecting so it can be re-enumerated by the host. This
process takes approximately 50 ms, to ensure that the host has seen the
device disconnect and re-attach to the bus.

4.5.2.4 CheckSleep

CheckSleep tests the UCTRL.UIDLE bit if set, indicating that there has been
no activity on the bus for 3 ms. If set, the device can be put to SLEEP, which
puts the part into a Low Power Standby mode until awakened by bus activity.
This has to be handled outside the ISR because we need the interrupt to
wake us from SLEEP, and because the application may not be ready to
SLEEP when the interrupt occurs. Instead, the application should periodically
call this function to poll the bit when the device is in a good place to SLEEP.
 2001 Microchip Technology Inc. DS41174A-page 43

PICDEM™ USB User’s Guide
Prior to putting the device to SLEEP, CheckSleep enables the activity inter-
rupt so the device will be awakened by the first transition on the bus. The
PICmicro MCU will immediately jump to the ISR, which recognizes the activity
interrupt and then disables the interrupt and resumes processing with the
instruction following the CheckSleep call.

4.5.2.5 ConfiguredUSB

ConfiguredUSB (Macro) continuously polls the enumeration status bits and
waits until the host has configured the device. This should be used after the
call to InitUSB and prior to the first time your application attempts to commu-
nicate on the bus.

4.5.2.6 SetConfiguration

SetConfiguration is a callback function that allows your application to associ-
ate some meaning to a Set Configuration command from the host. The Chap-
ter 9 software stores the value in USB_Curr_Config so it can be reported back
on a Get Configuration call. This function is also called passing the new con-
figuration into W. This function is called from within the ISR so it should be
kept as short as possible.

4.6 Behind the Scenes

4.6.1 InitUSB
InitUSB clears the error counters and enables the 3.3V regulator and the
USB Reset interrupt. This implements the requirement to prevent the
PICmicro MCU from responding to commands until the device has been
RESET.

The host sees the device and resets the device to begin the enumeration pro-
cess. The RESET then initializes the Buffer Descriptor Table (BDT) and End-
Point Control Registers, in addition to enabling the remaining USB interrupt
sources.

The interrupt transfers control to the interrupt vector (address 0x0004). Any
Interrupt Service Routine must preserve the processor state by saving the
FSR’s that might change during interrupt processing. We recommend saving
W, STATUS, PCLATH, and FSR. W can be stored in Common RAM to avoid
banking issues. Then, the Interrupt Service Routine starts polling the interrupt
flags to see what triggered the interrupt. The USB interrupts are serviced by
calling ServiceUSBInt , which further tests the USB interrupt sources to deter-
mine how to process the interrupt.
DS41174A-page 44  2001 Microchip Technology Inc.

Chapter 9 USB Firmware
Subsequently, the host sends a setup token requesting the device descriptor.
The USB Peripheral receives the Setup transaction, places the data portion in
the EP0 out buffer, loads the USTAT register to indicate which endpoint
received the data, and triggers the Token Done (TOK_DNE) interrupt. The
Chapter 9 commands interpret the Setup token and sets up the data to
respond to the request in the EP0 IN buffer. It then sets the UOWN bit to tell
the SIE there is data available.

Next, the host sends an IN transaction to receive the data from the setup
transaction. The SIE sends the data from the EP0 IN buffer and next sets the
Token Done interrupt to notify us that the data has been sent. If there is addi-
tional data, the next buffer full is set up in the EP0 IN buffer.

Token processing takes place for the entire enumeration sequence. The
device starts in the powered state, transitions to RESET via the Reset inter-
rupt, moves to ADDRESSED via the Set Address command, and shifts to
CONFIGURED via a Set Configuration command.

The USB peripheral detects several different errors and handles most inter-
nally. The USB_ERR interrupt notifies the PIC that an error has occurred. No
action is required by the PICmicro MCU when an error occurs. Instead, the
errors are simply acknowledged and counted. There is no mechanism to pull
the device off the bus if there are too many errors. If this behavior is desired, it
must be implemented in the application.

The Activity interrupt is left disabled until the USB peripheral detects no bus
activity for 3 ms. Then, it suspends the USB peripheral and enables the Activ-
ity interrupt. The Activity interrupt subsequently re-activates the USB periph-
eral when bus activity resumes, so processing may continue.

4.6.2 CheckSleep
CheckSleep is a separate call that takes the bus idle one step further and
puts the PICmicro MCU to SLEEP if the USB peripheral has detected no
activity on the bus. This powers down most of the device to minimal current
draw. This call should be made at a point in the main loop where all other
processing is complete.

4.7 Examples
This example shows how the USB functions are used. This example first ini-
tializes the USB peripheral, which allows the host to enumerate the device.
The enumeration process occurs in the background, via an Interrupt Service
Routine. This function waits until enumeration is complete. Then, it polls EP1
OUT to see if there is any data available. When a buffer is available, it is cop-
ied to the IN buffer. Presumably, your application would be more interesting
than Example 4.1.
 2001 Microchip Technology Inc. DS41174A-page 45

PICDEM™ USB User’s Guide
Example 4.1: USB Peripheral Demo Program

4.8 Multiple Configuration or Report Descriptors
The Ch9 firmware makes allowances for the fact that more than one configu-
ration or report descriptor may be desired. Allowances for multiple interface,
HID, and endpoint descriptors were not made, because they are not needed.
These descriptors are all read in with the configuration descriptor, regardless
of how many there are.

; **
; Demo program that initializes the USB peripheral, allows the Host
; to Enumerate, then copies buffers from EP1OUT to EP1IN.
; **
Main

pagesel InitUSB
call InitUSB ; Set up everything so we can enumerate
pagesel Main
ConfiguredUSB ; wait here until we have enumerated.

CheckEP1 ; Check Endpoint 1 for an OUT transaction
bankisel BUFFER ; point to lower banks
pagesel GetEP1
movlw BUFFER
movwf FSR ; point FSR to our buffer
call GetEP1 ; If data is ready, it will be copied.
pagesel CheckEP1
btfss STATUS,C ; was there any data for us?
goto CheckEP1 ; Nope, check again.

PutBuffer
bankisel BUFFER ; point to lower banks
pagesel PutEP1
movlw BUFFER
movwf FSR ; point FSR to our buffer
movlw 0x08 ; send 8 bytes to endpoint 1
call PutEP1
pagesel PutBuffer
btfss STATUS,C ; was it successful?
goto PutBuffer ; No: try again until successful
pagesel CheckEP1
goto CheckEP1 ; Yes: restart loop

end
DS41174A-page 46  2001 Microchip Technology Inc.

Chapter 9 USB Firmware
The host requests the descriptors by specifying the type of descriptor it wants
and an index value. If more than one configuration descriptor exists, it will
request the first one by specifying an index of zero and the second, by speci-
fying an index of one. To make this process as easy as possible for develop-
ers, the functions Config_descr_index and Report_descr_index have been
created in descript.asm . These functions will need to be modified if your
code has more than one configuration, or more than one report descriptor. All
you need to do is specify the starting label for additional descriptors in the
lookup table for these functions.

4.9 Optimizing the Firmware
This firmware has been created to provide developers with ready-made USB
functions, so they don’t have to create these functions for themselves. Most
developers will not utilize all of the functions in the Ch9 firmware. In order to
optimize the program memory, unused functions can be taken out of the firm-
ware. The following guidelines are a good place to start the optimization.

4.9.1 USB Status on PORTB
The firmware outputs the status of USB communication on PORTB. This fea-
ture is intended for use with the PICDEM™ USB circuit board, which drives an
LED with each PORTB pin. The LEDs indicate the following USB status infor-
mation: RB0 – powered, RB1 – default, RB2 – addressed, RB3 – configured,
RB4 – sleeping, RB5 – EP0 active, RB6 – EP1 active, RB7 – EP2 active.
Obviously, these USB status indicators will probably not be used in a finished
product by a developer, although they are very helpful during development. All
code associated with the USB status LEDs can be eliminated from the pro-
gram memory by ensuring that SHOW_ENUM_STATUS is not defined at the
top of usb_ch9.asm .

4.9.2 Error Counter
Similar to the USB status LEDs, code exists in the firmware that counts vari-
ous errors for debugging purposes. Program memory space can be saved by
making sure that COUNTERRORS is not defined.

4.9.3 GetEP1, GetEP2, PutEP1, and PutEP2
These functions are all macros defined in usb_defs.inc . Instances of each
of these macros occur in usb_ch9.asm . If a developer does not utilize one or
more of these functions, space can be saved by removing the instance(s) not
needed from usb_ch9.asm .

Note: String descriptors also use an index function, string_index (in
descript.asm). This function will need to be modified in the
same manner if your code has a number of strings other than six.
 2001 Microchip Technology Inc. DS41174A-page 47

PICDEM™ USB User’s Guide
4.9.4 HID Class
The HID class is one of several classes suitable for low speed USB. In addi-
tion to these other classes, a vendor-defined class can be specified. Should a
developer use a class other than the HID class, any HID class specific code in
the firmware would be wasting space. The HID class specific code is found in
the file hidclass.asm . In a case where the HID class is not being utilized by
a developer, this file and any variables or labels associated with it, should be
removed from the project.

4.10 Cursor Demonstration
Microchip provides a working USB demonstration. This demonstration has the
effect of moving the cursor in a small circle on the user’s screen. The
following steps will get the demonstration working with an actual part or the
MPLAB ICE.

4.10.1 Getting the USB Demonstration to Work on a
PIC16C745/65

1. Unzip usbxxxasm.zip to a project folder.

2. Build the project in MPLAB IDE.
3. Program a PIC16C745 using a PICSTART Plus or a

PRO MATE II programmer. Make sure the configuration bits are
set as follows:

• Oscillator: H4

• Watchdog Timer: Off

• Power-up Timer: Off

• Code Protect: Off

4. Appendix A details the circuit in which to implement the
PICmicro MCU. Attach the USB cable to your computer.

5. Provide power to the PICmicro MCU. If you are running Win-
dows 98 (with the USB upgrade), Windows NT, or Windows
2000, your operating system will detect a new device and install
the necessary drivers automatically. After this occurs, you
should see the cursor rotating in a small circle on your screen.
To stop the cursor from rotating, detach the USB cable.

Note: In the file name usbxxxasm.zip, xxx is the version number and
may change without notice.

Note: To program a PIC16C765, you will need to use the linker file and
include files associated with the PIC16C765. In addition, you will
need to identify the part in the Development mode dialog. See the
MPLAB IDE User’s Guide for details.
DS41174A-page 48  2001 Microchip Technology Inc.

Chapter 9 USB Firmware
4.10.2 Getting the USB Demonstration to Work Using the
MPLAB ICE

1. Unzip usbxxxasm.zip to a project folder.

2. Build the project in MPLAB IDE.
3. Make sure the emulator is set up in the Development Mode

dialog, as follows:

• Tools: MPLAB ICE Emulator

• Clock: Desired Frequency: 24 MHz

• Configuration: Watchdog Timer: None

• Power: Processor Power: From Target Board

4. Appendix A illustrates the circuit in which to implement the
MPLAB ICE. Connect the USB cable to your computer. The
external oscillator portion of the circuit is optional when using
MPLAB ICE.

5. Run the project on the emulator. If you are running Windows 98
(with the USB upgrade), Windows® NT, or Windows® 2000, your
operating system will detect a new device and install the neces-
sary drivers automatically. After this occurs, you should see the
cursor rotating in a small circle on your screen. To stop the cur-
sor from rotating, press F5.

Note: In the file name usbxxxasm.zip, xxx is the version number and
may change without notice.

Note: The firmware is set up to run on a PIC16C745 as the default. To
emulate a PIC16C765, you will need to use the linker file and
include files associated with the PIC16C765. In addition, you will
need to identify the part in the Development Mode dialog.
 2001 Microchip Technology Inc. DS41174A-page 49

PICDEM™ USB User’s Guide
4.10.3 Emulation Tips
1. Turn on the emulator. Open the project to initialize the emulator.

If the project is in a mode other than Emulation, follow step 2.
2. If your project is already open before you turn the emulator on,

you can initialize it by first, turning the emulator on. Then, go to
the option menu and click Development Mode. Make sure that
the MPLAB ICE Emulator radio button is selected in the Tools
folder of the Development Mode dialog. Click OK. The emulator
will initialize.

3. Be certain the proper processor module and device adapters
are installed.

4. Should you have other problems, please refer to the MPLAB
ICE Users Guide as your first resource.

Note: Be sure to pull D- up to VUSB (via R1) not VDD. For more on why
this is done, see the section Universal Serial Bus: Transceiver,
Regulator in the PIC16C745/765 data sheet.
DS41174A-page 50  2001 Microchip Technology Inc.

PICDEM™ USB User’s Guide

Chapter 5. Troubleshooting
5.1 Introduction
This chapter describes some common problems associated with using
PICDEM™ USB and steps to follow to resolve those problems. It also
includes frequently asked questions (FAQ’s) associated with using PICDEM™
USB.

5.2 Highlights
Highlights covered in this chapter:

• Common Problems

• FAQ’s

5.3 FAQ

5.3.1 Hardware Questions
Q: Should I connect V BUS to VUSB?

A: NO, these are completely different voltages. VUSB is a 3.3V power supply,
intended to source power to pull-up resistors on D+ or D-. VBUS is a 5V power
supply, intended to power the entire circuit board.

Q: Ok, but can I leave the 220 nF capacitor off of V USB?

A: NO, this capacitor is required to stabilize the VUSB voltage. Make sure you
copy the circuit as drawn in the data book.

5.3.2 PC/Windows Questions
Q: When I made a descriptor change, why is Windows still showing my
old description?

A: Windows stores most of the descriptor information in the registry. It then
makes the assumption that devices with the same vendor and product ID
have the same descriptor and will load the old descriptor from the registry.
This may be fine for consumers, but engineers require different behavior.
Before you enumerate with a new registry, simply use regedit to delete all
old entries about your device from the registry. If this is slowing you down, use
a Macintosh to develop the device descriptors and then switch to Windows to
develop the actual application code. The Macintosh does not have a perma-
nent device registry and rereads all the information every time.
 2001 Microchip Technology Inc. DS41174A-page 51

PICDEM™ USB User’s Guide
5.3.3 Macintosh Questions
Q: Where do I go to get example code for Macintosh systems?

A: Going to www.apple.com/usb is a good start.

Q: Why doesn’t the keyboard example work on my Macintosh?

A: You are using a version earlier than MacOS 10.0. The SetIdle and GetIdle
are required for versions earlier than MacOS 10.0. These functions are not
implemented yet.
DS41174A-page 52  2001 Microchip Technology Inc.

PICDEM™ USB User’s Guide

Appendix A. PICDEM™ USB Schematics
A.1 Introduction
This appendix contains schematics associated with PICDEM™ USB.

A.2 Highlights
Topics covered in this appendix:

• PC Peripheral Connectors

• LCD, LED and ICD Connections

• PIC16C745 and Expansion Connector

• PIC16C765 and Oscillator

• Power Supply and USB Connections

• Parts Placement Diagram
 2001 Microchip Technology Inc. DS41174A-page 53

PICDEM™ USB User’s Guide
A.3 Schematics

Figure A.1: PC Peripheral Connectors

VDD

RC7

RC6

16 VCC

5C2-

6V-

9 R2OUT

10 T2IN
11 T1IN

12 R1OUT

1 C1+

2 V+

8R2IN

7T2OUT
14T1OUT

13R1IN

4C2+

15GND

3 C1-

MAX232CPE

9

8

7

6
1

2

3

4

5

DB9M

J7 RB6

RB5

RB3

RB2

RB0

RN1 470 typ.

RB7

RB1

RB4

RN4

7

4

1

9

3

5

6

8

2

6 11

3 14

8 9

4 13

5 12

2 15

7 10

1 16

VDD

RD3

RA2

RA1

RA0
RD0

RA3

RD1

RD2

1
TP2

GND

PC Style Gameport
DB15F

Stick 2 Button 2

Stick 2 X axis

Stick 1 Y axis

Stick 1 Button 1
Stick 1 X axis

Stick 1 Button 2

Stick 2 Button 1

Stick 2 Y axis

RC1

RC0

PS-2 Data

PS-2 Keyboard/Mouse Interface

PS-2 Clock
6 5

4

2
3

1

J12

CONN-MDIN6PRA

RS-232

1µ
F

C
1

7

C
18

1
µF

C
19

1
µF

C
16

1µ
F

H
D

R
-1

X
9

J10

VDD
S282

S2Y

15
14
13

S2X
12
11
10

9

S1B2

S1Y

8
7
6
5

S1X
S1B1

4
3
2
1

J4

R4

1K

51K

R5

1
2
3
4
5
6

VDD

S281

S1B1
S1B2
S281
S282

C5 .1µF

C6 .1µF

C7 .1µF

C13 .1µF

C14 .1µF
S2Y
S2X
S1Y
S1X

C15 .1µF

C21 .1µF

C22 .1µF

6
5
4
3
2
1

R16 100

R15

R14

R13

R12

R11

R10

R6
DS41174A-page 54  2001 Microchip Technology Inc.

PICDEM™ USB Schematics
Figure A.2: LCD, LED and ICD Connections

10Ω

R3

RB7

RB6

RB3

VDD
MCLR 1

2

3

4

6

5

J6

VDD

GND

VDD

GND GND

RD0

RE2

RE1

RE0

RD1

RD2

RD3

RD4

RD5

RD6

RD7

GND

4 RS

5 R/W

6 E

7 DB0 DB1

DB2

10
DB3

11
DB4

1 VSS

2 VCC

3 VEE
12

DB5

13
DB6

14
DB7

LCD1

RED
RN2:A

470

2 1

3 1

14

15

16

17

18

19

RB0

RB1

D3

RB2

RB3

D4

D5

D6

RB5

RB4

D7

RB7

D8

D9

D10

RB6

2 1
J9

1
50 R
2

1

LCD_DISPLAY

15 16

17 18

A A K K

9

8

R
J1

1_
6P

IN

VDD

ICD (future expansion)
 2001 Microchip Technology Inc. DS41174A-page 55

PICDEM™ USB User’s Guide
Figure A.3: PIC16C745 and Expansion Connector

VDD

RA5

RA4

RA2

RA1

MCLR

OSC2

OSC1

RA3

RA0

D+

D-

VUSB

RC7

RC2

RC1

RB7

RB5

RB4

RB2

RB1

RB0
RE2

RB1
RE0

RA5
RB3

RA3
RB4

RA2
RB6

RA0
RB7

RC6

RC0

RB6

RB3

RB0

RE1

RB2

RA4

RB5

RA1

MCLR

8
VSS

19
VSS

10
OSC2

9
OSC1

1
MCLR

2
RA0

3
RA1

4
RA2

5
RA3

6
RA4

7
RA5

20
VDD

22RB1

24RB3

25RB4

26RB5

27RB6

28RB7

23RB2

21RB0

11RC0

12RC1

13RC2

14VUSB

17RC6
18

RC7

15D-

16
D+

PIC16C745 28-PDIP

U3
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

IDC2X20M

J5:1

VDD
RD0

RD1
RC1

RC0

RD3
RC2
RD2

RD4

RD6

RD5

RD7
RC7

RC6

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

IDC2X20M

J5:2

0.
1µ

F

C
11
DS41174A-page 56  2001 Microchip Technology Inc.

PICDEM™ USB Schematics
Figure A.4: PIC16C765 and Oscillator

VDD

D-

D+

RC0

RC1

RC2

RC6

RC7

RD0

RD1

RD2

RD3

RD4

RD5

RD6

RD7

RE0

RE1

RE2

OSC2

OSC1

RB7

RB6

RB5

RB4

RB3
VDD

RB2

RB1

RB0

RA5

RA4

RA3

RA2

RA1

RA0

MCLR

VDD

VUSB

1

2

4

3

S1

B3F-1000

C2

33pF

470

R24

470

R9

Y4

6 MHz

RESONATOR-ZTT

C3

33pF

4
VCC

3OUT2 GND

1 NC/OE

Y3

OSC_CAN 40 RB7

37 RB4

34 RB1

7 RA5/AN4

4 RA2/AN2

32 VDD

31
VSS

18VUSB

26RC7/RX/DT

20RD1/PSP1

27RD4/PSP4

30RD7/PSP7

9
RE1/WR/AN6

13 OSC1/CLKIN

36 RB3

38 RB5

39 RB6

6 RA4/T0CKI

33 RB0/INT

3 RA1/AN1

1 MCLR/VPP

2 RA0/AN0

11 VDD

12
VSS

24D+

23D-

17RC2/CCP1

19RD0/PSP0

21RD2/PSP2

29RD6/PSP6

28RD5/PSP5

10RE2/CS/AN7

35 RB2 25RC6/TX/CK

22RD3/PSP3

8
RE0/RD/AN5

14
OSC2/CLKOUT

16RC1/T1OSI/CCP2

15RC0/T1OSO/T1CKI

5 RA3/AN3/VREF

PIC16C765

U5

VDD

OSC1

VDD

R
2

3

4.
7k R
8

4.
7

k

1

2

4

3

S2

B3F-1000

0.
1µ

F

C
20

0.
1µ

F

C
10

0.
1µ

F
C

1

 2001 Microchip Technology Inc. DS41174A-page 57

PICDEM™ USB User’s Guide
Figure A.5: Power Supply and USB Connections

1

2

3

4

VBUS

D- 1.5k
VUSB

R1

1.5k

R2

Full speed future
expansion

1

3

2

J2

DJ005B

CR1

W02M 4
7µ

F

C
12

VBUS

VDD

47
0

R
7

Self/Bus Power

1IN
3

OUT

U2
LM7805

G
re

en

D
2

1

3

J3

3PHDR

C
O

M
2

0.
1µ

F

C
8

10
µF

C
9

D+

2

+

+

DS41174A-page 58  2001 Microchip Technology Inc.

PICDEM™ USB Schematics
Figure A.6: Parts Placement Diagram

GameportJ4

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

R
B

0
J9

R
B

1
R

B
2

R
B

3
R

B
4

R
B

5
R

B
6

R
B

7

P
ow

er
ed

D
ef

au
ltA

dd
re

ss
ed C

on
fig

ur
edS

le
ep

in
g E

P
0

-
A

ct
.

E
P

1
-

A
ct

. E
P

2
-

A
ct

.

U
S

B
C

om
m

un
ic

at
io

n
S

ta
tu

s
(P

or
tB

)

R
N

1

K
ey

pa
d

J1
0

LC
D

M
od

ul
e

R
21

R
22

RN2

LE
D

E
na

bl
e

R
8

R
9

R
24

R
23

R
5

C
22

C
21

Y
3

R
1

5

R
1

4

R
11

R
1

0

C
10

M
C

LR

S
1

S
2

R
A

4

R
4

PS-2

J1
2

C
18

C
17

C
16

C
19

J6 IC
D

F
ut

ur
e

U
se

C
6

C
7

C
5

C
13 C

3

C
2

Y
4C
1

U
5

U
3

PIC16C765

PIC16C745

M
C

LR
R

B
7

R
B

6
R

B
5

R
B

4
R

B
3

R
B

2
R

B
1

R
B

0

R
A

0
R

A
1

R
A

2
R

A
3

R
A

4
R

A
5

R
E

0
R

E
1

R
E

2

R
D

7
R

D
6

R
D

5
R

D
4

R
D

3
R

D
2

R
D

1
R

D
0

R
C

7
R

C
6

R
C

2
R

C
1

V
D

D

G
N

D

R
C

0
V

D
D

G
N

D

C
11

R
12

R
13

R
6

R
16

U
4

R
7

D
2

C
8

C
9

U
2

C
R

1
S

el
f

J3
B

us
J2

C
12

9-
20

v
A

C
/D

C

J8
U

S
B

R
1R

2

F
ul

lS
pe

ed
P

u
ll-

u
p

T
P

3
T

P
4

C
4

G
N

D
V

+

R
3

LC
D

B
ac

kl
ig

ht
P

ow
er

T
P

1
V

D
D

G
N

D
T

P
2

P
ro

to
ty

pi
ng

A
re

a

C
20

C
14 C

15

P
IC

D
E

M
U

S
B

+ + + +

+

+
+

 2001 Microchip Technology Inc. DS41174A-page 59

PICDEM™ USB User’s Guide
NOTES:
DS41174A-page 60  2001 Microchip Technology Inc.

PICDEM™ USB User’s Guide

Appendix B. PS/2 Lookup Tables
B.1 Introduction
This appendix contains tables identifying command and scan codes associ-
ated with PICDEM™ USB.

B.2 Scan Codes
Table B-1: PS/2 Keycodes
Key Make Break Key Make Break Key Make Break

A 1C F0,1C 9 46 F0,46 [54 F0,54

B 32 F0,32 ` 0E F0,0E INSERT E0,70 E0,F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C

D 23 F0,23 = 55 F0,55 PG UP E0,7D E0,F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71

F 2B F0,2B BKSP 66 F0,6 END E0,69 E0,F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A

H 33 F0,33 TAB 0D F0,0D U ARROW E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L ARROW E0,6B E0,F0,6B

J 3B F0,3B L SHFT 12 F0,12 D ARROW E0,72 E0,F0,72

K 42 F0,42 L CTRL 14 F0,14 R ARROW E0,74 E0,F0,74

L 4B F0,4B L WIN E0,1F E0,F0,1F NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C

O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B

P 4D F0,4D R WIN E0,27 E0,F0,27 KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A F0,5A

R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 5 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 6 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 4 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 3 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 1 F0,01] 5B F0,5B

3 26 F0,26 F10 9 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 ' 52 F0,52

5 2E F0,2E F12 7 F0,07 , 41 F0,41

6 36 F0,36

PAUSE

E1,14,77
E1,F0,14
F0,77 NONE

. 49 F0,49

7 3D F0,3D / 4A F0,4A

8 3E F0,3E PRNT E0,12, E0,F0,7C

SCROLL 7E F0,7E SCRN E0,7C E0,F0,12
 2001 Microchip Technology Inc. DS41174A-page 61

PICDEM™ USB User’s Guide
B.3 Command Codes
Table B-2: Host to PS/2 Keyboard Commands

HEX Code Description

ED Turns on/off LEDs -- Keyboard replies with ACK (FA) and waits
for another byte to be sent. Next byte sent determines the state
of the LEDs. (Bits 0-2 correspond to LEDs 1,2,3. Bits 3-7 should
always be 0.)

EE Echo -- Keyboard should respond with Echo (EE).

F0 Set Scan Code Set -- Responds with ACK (FA) and waits for
another byte to be sent. Next byte sent will be either 01, 02, or
03 (corresponding to scan code sets 1, 2, and 3.) If 00 is sent
(instead of 01, 02, or 03), keyboard will respond with ACK (FA),
followed by the current scan code set (again, 01, 02, or 03).

F2 Get ID -- Responds with ACK (FA), followed by an ID (A3, AB).
This also enables scanning.

F3 Set repeat rate -- Keyboard replies with ACK (FA) and waits for
another byte to be sent. Next byte sent will determine the type of
automatic repeat rate for the keyboard. After this byte is sent,
keyboard responds with another ACK (FA).

F4 Enable keyboard -- Clear the buffer and start scanning for data;
replies with ACK (FA).

F5 Disable keyboard -- Disables scanning and replies with ACK
(FA). Does not affect indicator LEDs.

F6 Restore default values. Does not affect indicator LEDs.

F7 Set all keys typematic. Responds with ACK (FA).

F8 Set all keys make/break. Responds with ACK (FA).

F9 Set all keys make. Responds with ACK (FA).

FA Set all keys typematic/make/break. Responds with ACK (FA).

FB Set key type typematic.

FC Set key type make/break.

FD Set key type make.

FE Resend -- Keyboard responds by retransmitting the last
command it sent.

FF Reset -- Resets the keyboard.
DS41174A-page 62  2001 Microchip Technology Inc.

PS/2 Lookup Tables
Table B-3: PS/2 Keyboard to Host Commands

HEX Code Description

00 Key detection error/keyboard buffer overflow (if sets 2 or 3 scan
codes are enabled).

83 ABKeyboard ID.

AA Self-test passed.

EE Echo -- Sent to Host after receiving "Echo" command from host.

FA Acknowledge (ACK).

FC Self-test failed.

FE Resend -- Host responds by retransmitting the last command
sent.

FF Key detection error/keyboard buffer overflow (if set 1 scan
codes are enabled).

Table B-4: PS/2 Mouse Commands

HEX Code Description

FF Reset -- This command causes the mouse to enter the RESET
mode and do an internal Self-Reset.

FE Resend -- Any time the mouse receives an invalid command, it
returns a resend command to the host system. The host sys-
tem, in turn, sends this command when it detects any error in
any transmission from the mouse. When the mouse receives
the resend command, it retransmits the last packet of data sent.

F6 Set Default -- This command re-initializes all conditions to the
power-on default state.

F5 Disable -- This command is used in the Stream mode to stop
transmissions initiated by the mouse. The mouse responds to all
other commands while disabled. If the mouse is in the Stream
mode, it must be disabled before sending it any command that
requires a response.

F4 Enable -- This command is used in the Stream mode to begin
transmission.

"F3,XX" Set sampling rate -- In the stream mode, this command sets the
sampling rate to the value indicated by byte XX (HEX)/sex.

F2 Read device type -- This command always receives a response
of 0x00 from the mouse.

F0 Set Remote mode -- Sets the mouse to Remote mode. Data val-
ues are reported on in response to a read data command.

EE Set Wrap mode -- Sets the mouse to Wrap mode. The mode
remains until 0xFF or 0xEC is received.

EC Reset Wrap mode -- The mouse returns to the previous mode of
operation after receiving this command.
 2001 Microchip Technology Inc. DS41174A-page 63

PICDEM™ USB User’s Guide
EB Read data -- This command requests that all data defined in the
data packet format be transmitted. This command is executed in
either Remote or Stream mode. This data is transmitted even if
there has been no movement since the last report or the switch
status is unchanged.

EA Set Stream mode -- This command sets the mouse to Stream
mode.

E9 Status request -- When this command is issued by the system,
the mouse responds with a 3-byte status report, same as Data
Report.

"E8,XX" Set resolution -- The mouse provides 4 resolutions, selected by
the second byte of the command.

E7 Set scaling 2:1 -- Scaling is used to provide a course/fine track-
ing response. At the end of a sample interval in the stream
mode, the current X and Y data values are converted to new
values. The sign bits are not involved in the conversion. 2:1
scaling is performed only in Stream mode. In response to a read
data command, the current value before conversion is sent.

E6 Reset scaling -- This command restores scaling to 1:1.

Table B-4: PS/2 Mouse Commands (Continued)

HEX Code Description
DS41174A-page 64  2001 Microchip Technology Inc.

PICDEM™ USB USER’S GUIDE

Glossary
Introduction
This glossary provides a common frame of reference by defining the terms
that follow.

Highlights
This glossary contains:

• PICSTART Plus Terms

PICDEM™ USB Terms
Application

A set of software and hardware developed by the user, usually designed to be
a product controlled by a PICmicro microcontroller.

Assembler Source Code

A text file that is processed by an assembler to produce a one-to-one
correspondence between assembler instructions and PICmicro machine
code.

Assemble

To translate a user’s “ASM” source text code into machine code.

Breakpoint – Software

An address where execution of the firmware will HALT.

Breakpoint – Hardware

An event whose execution will cause a HALT.

Build

A function that recompiles all the source files for an application.

C Source Code

A program written in the high level language called “C,” and which will be
converted into PICmicro machine code.

Compile

To translate a user’s “C” source text code into machine code.

Configuration Bits

Unique bits programmed to set modes of operation. A configuration bit may or
may not be preprogrammed. For MPLAB ICE, these bits are set in the
Options>Processor Setup dialog.
 2001 Microchip Technology Inc. DS41174A-page 65

PICDEM™ USB User’s Guide
Data RAM

General purpose file registers from RAM on the PICmicro device being
emulated. The File Register window displays data RAM.

Download

Download is the process of sending data from the host PC to the emulator or
to the target board.

EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of
PROM that can be erased electrically. Data is written or erased one byte at a
time. EEPROM retains its contents even when power is turned off.

Emulation

The process of executing software loaded into memory on the emulator
probe, as if the firmware resided on the microcontroller device under
development.

Emulation Memory

Program memory contained within the emulator.

Emulator

Hardware that performs emulation.

Emulator System

The Microchip Emulator System includes the MPLAB ICE Pod, processor
module, device adapter, cables and the MPLAB software.

Enumeration

Enumeration is the process of a device communicating its requirements to the
host and the host assigning a unique address to the device.

Event

A description of a bus cycle which may include address, data, pass count,
external input, cycle type (fetch, R/W) and time stamp.

Export

Send data out of MPLAB IDE in a standardized format.

Extended Microcontroller Mode (PIC17CXX Devices Only)

In Extended Microcontroller mode, on-chip program memory, as well as
external memory, are available. Execution automatically switches to external
if the program memory address is greater than the internal memory space of
the PIC17CXX device. Inaccessible memory in Extended Microcontroller
mode includes configuration bits, test memory, and boot memory.

External Input Line (MPLAB ICE 2000 Only)

An External Input Signal Logic Probe Line (TRIGIN) for setting an event
based upon external signals.
DS41174A-page 66  2001 Microchip Technology Inc.

Glossary
External RAM (PIC17CXX Devices Only)

Off-chip Read/Write memory.

File Registers

On-chip general purpose and special function registers.

FLASH

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOPcycle is the second cycle of a two-cycle
instruction. Since the PICmicro architecture is pipelined, it pre-fetches the
next instruction in the physical address space while it is executing the current
instruction. However, if the current instruction changes the program counter,
this pre-fetched instruction is explicitly ignored, causing a forced NOPcycle.

HALT

The command that stops the emulator. Executing HALT is the same as
stopping at a break point. The program counter stops, and the user can
inspect and change register values, and single step through code.

HEX Code

A file of executable instructions assembled or compiled from source code into
standard HEX format code. HEX code can be directly converted to object
code.

High Level Language

A language for writing programs that is of a higher level of abstraction from
the processor than assembler code. High level languages (such as C) employ
a compiler to translate statements into machine instructions that the target
processor can execute.

ICE

In-Circuit Emulator. MPLAB ICE is Microchip’s In-Circuit Emulator that works
with MPLAB IDE.

IDE

Integrated Development Environment. An application that has multiple
functions for firmware development. The MPLAB IDE integrates a compiler,
an assembler, a project manager, an editor, a debugger, a simulator, and an
assortment of other tools within one Windows application. A user developing
an application should be able to write code, compile, debug and test an
application without leaving the MPLAB desktop.

Import

Bring data into the MPLAB Integrated Development Environment (IDE) from
an outside source

Mac

Short for Macintosh.
 2001 Microchip Technology Inc. DS41174A-page 67

PICDEM™ USB User’s Guide
MacOS

The Macintosh Operating System. Versions 8.6 and higher have USB
support.

Make Project

A command that rebuilds an application, recompiling only those source files
that have changed since the last complete compilation.

Microcontroller Mode

One of the possible program memory configurations of the PIC17CXX family
of microcontrollers. In Microcontroller mode, only internal execution is
allowed. Thus, only the on-chip program memory is available in
Microcontroller mode. Accessible memory includes: program memory,
configuration bits, test memory, and boot memory (FE00h to FFFFh).

Microprocessor Mode

One of the possible program memory configurations of the PIC17CXX family
of microcontrollers. In Microprocessor mode, the on-chip program memory is
not used. The entire 64K program memory is mapped externally. Inaccessible
memory in Microprocessor mode includes configuration bits, test memory,
and boot memory.

MPLAB ICE

Microchip’s in-circuit emulator that works with MPLAB IDE.

MPSIM

Microchip’s simulator that works with MPLAB IDE.

MPLAB Software

The name of the main executable program that supports the IDE with an
Editor, Project Manager, and Emulator/Simulator Debugger. The MPLAB
Software resides on the PC host. The executable file name is MPLAB.EXE.
MPLAB.EXEcalls many other files.

MRU

Most Recently Used. Refers to files and windows available to be selected
from MPLAB main pull-down menus.

Non Real-Time

Refers to the processor executing single step instructions, or MPLAB IDE
being run in Simulator mode.

NOP

No operation.
DS41174A-page 68  2001 Microchip Technology Inc.

Glossary
Object Code

The machine code that is produced from the source code after it is processed
by an assembler or compiler. This code will be the memory resident code that
will run on the PICmicro MCU in the user’s application. Relocatable code is
code produced by MPASM Assembler or MPLAB C17, that can be run
through MPLINK Object Linker.

Off-Chip Memory

Off-Chip Memory refers to the memory selection option for the PIC17CXX
device, where memory may reside on the target board, or where all program
memory may be supplied by the emulator. Options > Processor Setup >
Hardware provides the Off-Chip Memory selection dialog box.

PC

Any IBM or compatible Personal Computer. MPLAB IDE needs a 486X or
better machine.

Host

The computer that is serving as master to a USB device. This could be any
machine with a USB interface, including PC’s or Mac’s.

PICmicro MCU

PICmicro MCU refers to the PIC12CXX, PIC14000, PIC16C5X, PIC16CXX,
PIC17CXX and PIC18CXX Microchip microcontroller families.

PICMASTER Emulator

The hardware unit that provides tools for emulating and debugging firmware
applications. This unit contains emulation memory, break point logic,
counters, timers, and a trace analyzer among some of its tools. MPLAB ICE is
the newest emulator from Microchip.

Pod

The external emulator box that contains emulation memory, trace memory,
event and cycle timers, and trace/break point logic. Occasionally used as an
abbreviated name for the MPLAB ICE Emulator.

Power-on Reset Emulation

A software randomization process that writes random values in data RAM
areas to simulate uninitialized values in RAM upon initial power application.

Program Counter

A register that specifies the current execution address for emulation and
simulation.

Program Memory

Memory containing the downloaded target application firmware.

Project

A set of source files and instructions to build the object code for an
application.
 2001 Microchip Technology Inc. DS41174A-page 69

PICDEM™ USB User’s Guide
PRO MATE II

A device programmer from Microchip. Can be used with MPLAB IDE or
stand-alone.

Prototype System

A term referring to a user's target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PICmicro devices have a PWM
peripheral.

Radix

The number base, hex, or decimal, used in selecting an address and for
entering data in the Window > Modify command.

Real-Time

When released from the HALT state, the processor runs in Real-Time mode
and behaves exactly as the normal chip would behave. In Real-Time mode,
the real-time trace buffer is enabled and constantly captures all selected
cycles, and all break logic is enabled. In the emulator, the processor executes
in real-time until a valid break point causes a HALT, or until the user halts the
emulator.

In the simulator, real-time simply means execution of the microcontroller
instructions as fast as they can be simulated by the host CPU.

Run

The command that releases the emulator or simulator from HALT, allowing it
to run the application code and change or respond to I/O in real-time.

SFR

Special Function Registers of a PICmicro MCU.

Simulator

A software program that models the operation of the PICmicro
microprocessor.

Simulator Stimulus

Data generated to exercise the response of MPSIM Simulator to external
signals. Often the data is put into the form of a list of actions in a text file.

Single Step

This command steps though code, one instruction at a time with MPSIM
Simulator or an emulator. After each instruction, MPLAB IDE updates register
windows, watch variables, and status displays, so you can analyze and debug
instruction execution.

You can also single step C compiler source code, but instead of executing
single instructions, MPLAB IDE will execute all assembly level instructions
generated by the line of the high level C statement.
DS41174A-page 70  2001 Microchip Technology Inc.

Glossary
Source

Source code, usually a text file of assembly instructions or C code.

Special Function Registers

Registers that control I/O processor functions, I/O status, timers, or other
modes or peripherals.

Stack

“Push-Down” list of calling routines. Each time a PICmicro microcontroller
executes a call or responds to an interrupt, the software pushes the return
address to the stack. A return command pops the address from the stack.

Step-Into

This command is the same as Single Step. Step-Into (as opposed to Step-
Over) follows a CALL instruction into a subroutine.

Step-Over

Step-Over allows you to debug code without stepping into subroutines. When
stepping over a CALL instruction, the next break point will be set at the
instruction after the CALL. If for some reason, the subroutine gets into an
endless loop or does not return properly, the next break point will never be
reached.

The Step-Over command is similar to Single Step, except for its handling of
CALL instructions.

Symbol

A label usually produced by an assembler or compiler that refers to machine
locations by function names, variable locations, constant declarations, source
line number, or other reference to user source code.

System Button

The System Button is located in the upper left corner of Windows and some
dialogs. This button usually has “Minimize,” “Maximize,” and “Close.” In some
MPLAB windows, additional modes or functions can be found under the
System Button.

Target

Refers to user hardware.

Target Application

Firmware residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board that is being
emulated.
 2001 Microchip Technology Inc. DS41174A-page 71

PICDEM™ USB User’s Guide
Template

Lines of text that you build for inserting into your files at a later time. The
MPLAB Editor stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB functions.

Trace

An emulator or simulator function that logs program execution. The emulator
logs program execution into its trace buffer, which is uploaded to MPLAB’s
trace window.

Trace Memory

Trace Memory contained within the Emulator. Trace Memory is sometimes
called the Trace Buffer.

Trigger Output

Trigger Output refers to an emulator output signal that can be generated at
any address or address range, and is independent of the trace and break
point settings. Any number of trigger output points can be set.

Upload

The Upload function transfers data from the emulator to the host PC, or from
the target board to the emulator.

USB

Universal Serial Bus. A popular bus for connecting peripherals to personal
computers.

Warning

An alert that is provided to warn you of a situation that would cause physical
damage to a device, software file, or equipment.

Watchdog Timer

A timer on a PICmicro microcontroller that resets the processor after a
selectable length of time.

Watch Variable

A variable that you may monitor during a debugging session. Watch windows
contain a list of watch variables that are updated at each break point.
DS41174A-page 72  2001 Microchip Technology Inc.

PICDEM™ USB USER’S GUIDE

Index
A
Applications .. 10

Describing .. 11
Integrating USB .. 39

B
Breakpoints .. 65
Buttons ... 36

C
Codes ... 61

Command .. 62
Host to PS/2 62
PS/2 Mouse 63
PS/2 to Host 63

Scan ... 61
PS/2 Keycodes 61

Components ... 9
Configuration Bits ... 65
Cursor Demonstration 48

MPLAB ICE .. 49
PIC16C745/765 48

Customer Support .. 7

D
Default Demonstration 10
Demonstration Code 13
Descriptors

Creating ... 11
Multiple ... 46
Report - Debugging 11

Development Systems
Compilers ... 6
Emulators ... 6
MPLAB IDE .. 7
Programmers ... 6

Development Systems Customer
Notification Service 5

Document Conventions 2
Updates .. 3

E
EEPROM .. 66
Emulation .. 50
Emulator System .. 66
Endpoints, Multiple ... 23
Error Counter .. 47
Extended Microcontroller Mode 66
External Input Line .. 66
External RAM .. 67

F
Function Call Reference

GetEPn ... 43
PutEPn ... 42

Functions
CheckSleep .. 43, 45
ConfiguredUSB .. 44
InitUSB ... 42, 44
ServiceUSBlnt .. 43
SetConfiguration 44
SoftDetachUSB .. 43
StallUSBEP/UnstallUSBEP 43

G
Gameport .. 13

Connector Pinout 32
Hardware Implementation 14
Identification Codes 17
Reading Firmware 15
Translation ... 16
USB Translator ... 13

Gameport/PS/2 Combination 23
GetEPn ... 47
Glossary .. 65

H
HID Class .. 48
 2001 Microchip Technology Inc. DS41174A-page 73

PICDEM™ USB User’s Guide
I
ICE ..67
IDE ..67
Internet Address ...4
Interrupt Structure ...40

Buffer Allocation41
File Packaging ..41
Function Call Reference42
Processor Resources40
RAM ...40
ROM ...40
Stack Levels ...40

J
Jumpers ..36

K
Keypad

Connector Pinout35

L
LCD

Connector Pinout35
Hardware Implementation25
Macintosh Code Support30
PC Code Support29
PC/Macintosh Identification29
Report Descriptor27
USB Command Set27

LCD Driver Firmware26
LCD Text Display ..25

M
Microchip Internet Web Site4
Microcontroller Mode68
Microprocessor Mode68
MPLAB ..68
MPLAB ICE ...68
MPSIM ..68

O
Off-Chip Memory ...69
Oscillator Support ..31

Canned ...31
Crystal ..32
Resonator ...31

P
Pass Counter ..69
PICMASTER ...69
Power ..37

Bus Power ..37
Self Power ..37

Project ...69
PS/2 ..17

Connector Pinout33
Firmware ...20
Hardware Implementation17

PutEPn ..47

R
Recommended Reading3
RS-232

Connector Pinout34

S
Schematics ..54

T
Text Terminal

USB Command Set
Input Commands29

Trace ...72
Troubleshooting ..51

U
USB

Connector Pinout36
Software Interface39
Status on PORTB47

W
Warranty Registration3
WWW Address ..4
DS41174A-page 74  2001 Microchip Technology Inc.

Index
NOTES:
 2001 Microchip Technology Inc. DS41174A-page 75

DS41174A-page 76  2001 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Austin - Analog
13740 North Highway 183
Building J, Suite 4
Austin, TX 78750
Tel: 512-257-3370 Fax: 512-257-8526
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Boston - Analog
Unit A-8-1 Millbrook Tarry Condominium
97 Lowell Road
Concord, MA 01742
Tel: 978-371-6400 Fax: 978-371-0050
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Rm. 531, North Building
Fujian Foreign Trade Center Hotel
73 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7557563 Fax: 86-591-7557572
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Germany - Analog
Lochhamer Strasse 13
D-82152 Martinsried, Germany
Tel: 49-89-895650-0 Fax: 49-89-895650-22
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/01

WORLDWIDE SALES AND SERVICE

	PICDEM USB User's Guide
	Trademarks
	Table of Contents
	Preface
	Chapter 1. Getting Started with the PICDEM™ USB
	1.1 Introduction
	1.2 Highlights
	1.3 Unpacking your PICDEM™ USB Kit
	1.3.1 Supplied Items
	1.3.2 Required Items
	1.3.3 Suggested Items

	1.4 Running the Default Demonstration
	1.5 Branching Out on Your Own
	1.5.1 Developing New USB Applications

	Chapter 2. USB Demonstration Code
	2.1 Gameport - USB Translator
	2.1.1 Introduction
	2.1.2 About the PC Gameport
	2.1.3 Hardware Implementation
	2.1.4 Gamepad Firmware
	2.1.5 Gamepad Report Descriptor
	2.1.6 Gameport Translation
	2.1.7 Vendor/Product Identification

	2.2 PS/2 Keyboard/Mouse - USB Translator
	2.2.1 Introduction
	2.2.2 About the PS/2 Port
	2.2.3 Hardware Implementation
	2.2.4 Data Format
	2.2.5 Keyboard
	2.2.6 Mouse
	2.2.7 Hardware Implementation
	2.2.8 PS/2 Firmware
	2.2.9 Report Descriptor
	2.2.10 Soft Detach
	2.2.11 Translation to USB

	2.3 Combination Gameport/PS/2/Mouse - USB Translator
	2.3.1 Introduction
	2.3.2 Using Multiple Endpoints

	2.4 Multi-Function LCD Text Display Example
	2.4.1 Introduction
	2.4.2 Hardware Implementation
	2.4.3 LCD Driver Firmware
	2.4.4 LCD Report Descriptor
	2.4.5 USB Command Set
	2.4.6 PC Code Support
	2.4.7 Macintosh Code Support

	Chapter 3. PICDEM™ USB Hardware
	3.1 Oscillator Support
	3.1.1 Canned Oscillator
	3.1.2 Resonator
	3.1.3 Crystal

	3.2 Connector Pinout
	3.2.1 Gameport (J4) Pinouts
	3.2.2 PS/2 (J12) Pinouts
	3.2.3 RS-232 (J7) Pinouts
	3.2.4 LCD (J1) Pinouts
	3.2.5 Keypad (J10) Pinouts
	3.2.6 USB (J8) Pinouts

	3.3 Buttons and Jumpers
	3.3.1 S1 - MCLR
	3.3.2 S2 - RA4
	3.3.3 J3 - Bus/Self Power Selection
	3.3.4 J9 - LED Enable

	3.4 Power
	3.4.1 Self Power Options
	3.4.2 Bus Power

	Chapter 4. Chapter 9 USB Firmware
	4.1 Introducing the USB Software Interface
	4.2 Integrating USB Into Your Application
	4.3 Interrupt Structure Concerns
	4.3.1 Processor Resources
	4.3.2 Stack Levels
	4.3.3 ROM
	4.3.4 RAM
	4.3.5 Common RAM Usage
	4.3.6 Buffer Allocation

	4.4 File Packaging
	4.5 Function Call Reference
	4.5.1 Application Layer Function
	4.5.2 Protocol Layer Functions

	4.6 Behind the Scenes
	4.6.1 InitUSB
	4.6.2 CheckSleep

	4.7 Examples
	4.8 Multiple Configuration or Report Descriptors
	4.9 Optimizing the Firmware
	4.9.1 USB Status on PORTB
	4.9.2 Error Counter
	4.9.3 GetEP1, GetEP2, PutEP1, and PutEP2
	4.9.4 HID Class

	4.10 Cursor Demonstration
	4.10.1 Getting the USB Demonstration to Work on a PIC16C745/65
	4.10.2 Getting the USB Demonstration to Work Using the MPLAB ICE
	4.10.3 Emulation Tips

	Chapter 5. Troubleshooting
	5.1 Introduction
	5.2 Highlights
	5.3 FAQ
	5.3.1 Hardware Questions
	5.3.2 PC/Windows Questions
	5.3.3 Macintosh Questions

	Appendix A
	Appendix B
	Glossary
	Index
	Worldwide Sales

